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1 Supplementary methods

In the present setion we give a brief exposition of the algorithm implemented

in BNFinder and its omputational ost for two generally used soring riteria:

Minimal Desription Length and Bayesian-Dirihlet equivalene. For a fuller

treatment, inluding detailed proofs, we refer the reader to [3, 4℄.

1.1 Polynomial-time exat algorithm

A Bayesian network (BN) N is a representation of a joint distribution of a set

of disrete random variables X = {X1, . . . , Xn}. The representation onsists of

two omponents:

• a direted ayli graph G = (X,E) enoding onditional (in-)dependenies

• a family θ of onditional distributions P (Xi|Pai), where

Pai = {Y ∈ X|(Y,Xi) ∈ E}

The joint distribution of X is given by

P (X) =
n
∏

i=1

P (Xi|Pai) (1)
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The problem of learning a BN is understood as follows: given a multiset

of X-instanes D = {x1, . . . ,xN} �nd a network graph G that best mathes

D. The notion of a good math is formalized by means of a soring funtion

S(G : D) having positive values and minimized for the best mathing network.

Thus the point is to �nd a direted ayli graph G with the set of verties X

minimizing S(G : D).
The BNFinder program is devoted to the ase when there is no need to

examine the ayliity of the graph, for example:

• When dealing with dynami Bayesian networks. A dynami BN desribes

stohasti evolution of a set of random variables over disretized time.

Therefore onditional distributions refer to random variables in neighbor-

ing time points. The ayliity onstraint is relaxed, beause the �unrolled�

graph (with a opy of eah variable in eah time point) is always ayli

(see [5℄ for more details). The following onsiderations apply to dynami

BNs as well.

• In ase of stati Bayesian Networks, the user has to supply the algorithm

with a partial ordering of the verties, restriting the set of possible edges

only to the ones onsistent with the ordering. BNFinder lets the user to

divide the set of variables into an ordered set of disjoint subsets of vari-

ables, where edges an only exist between variables from di�erent subsets

and they have to be onsistent with the ordering. If suh ordering is not

known beforehand, one an try to run BNFinder with di�erent orderings

and hoose a network with the best overall sore.

In the sequel we onsider some assumptions on the form of a soring funtion.

The �rst one states that S(G : D) deomposes into a sum over the set of random

variables of loal sores, depending on the values of a variable and its parents

in the graph only.

Assumption 1 (additivity) S(G : D) =
∑n

i=1 s(Xi,Pai : D|{Xi}∪Pai
), where

D|Y denotes the restrition of D to the values of the members of Y ⊆ X.

When there is no need to examine the ayliity of the graph, this assumption

allows to ompute the parents set of eah variable independently. Thus the point

is to �nd Pai minimizing s(Xi,Pai : D|{Xi}∪Pai
) for eah i.

Let us �x a dataset D and a random variable X. We denote by X
′
the set of

potential parents of X (possibly smaller than X due to given onstraints on the

struture of the network). To simplify the notation we ontinue to write s(Pa)
for s(X,Pa : D|{X}∪Pa).

The following assumption expresses the fat that soring funtions deom-

pose into 2 omponents: g penalizing the omplexity of a network and d evalu-

ating the possibility of explaining data by a network.

Assumption 2 (splitting) s(Pa) = g(Pa) + d(Pa) for some funtions g, d :
P(X) → R

+
satisfying Pa ⊆ Pa

′ =⇒ g(Pa) ≤ g(Pa
′).
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This assumption is used in the following algorithm to avoid onsidering net-

works with inadequately large omponent g.

Algorithm 1

1. Pa := ∅

2. for eah P ⊆ X
′
hosen aording to g(P)

(a) if s(P) < s(Pa) then Pa := P

(b) if g(P) ≥ s(Pa) then return Pa; stop

In the above algorithm hoosing aording to g(P) means hoosing inreas-

ingly with respet to the value of the omponent g of the loal sore.

Theorem 1 Suppose that the soring funtion satis�es Assumptions 1-2. Then

Algorithm 1 applied to eah random variable �nds an optimal network.

A disadvantage of the above algorithm is that �nding a proper subset P ⊆ X
′

involves omputing g(P′) for all ⊆-suessors P
′
of previously hosen subsets.

It may be avoided when a further assumption is imposed.

Assumption 3 (uniformity) |Pa| = |Pa
′| =⇒ g(Pa) = g(Pa

′).

The above assumption suggests the notation ĝ(|Pa|) = g(Pa). The following
algorithm uses the uniformity of g to redue the number of omputations of the

omponent g.

Algorithm 2

1. Pa := ∅

2. for p = 1 to n

(a) if ĝ(p) ≥ s(Pa) then return Pa; stop

(b) P = argmin{Y⊆X′:|Y|=p}s(Y)

() if s(P) < s(Pa) then Pa := P

Theorem 2 Suppose that the soring funtion satis�es Assumptions 1-3. Then

Algorithm 2 applied to eah random variable �nds an optimal network.
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1.2 Minimal Desription Length and Bayesian Informa-

tion Criterion

The Minimal Desription Length (MDL) soring riterion originates from infor-

mation theory [7℄. A network N is viewed here as a model of ompression of

a dataset D. The optimal model minimizes the total length of the desription,

i.e. the sum of the desription length of the model and of the ompressed data.

Let us �x a dataset D = {x1, . . . ,xN} and a random variable X. Reall the

deomposition s(Pa) = g(Pa) + d(Pa) of the loal sore for X. In the MDL

sore g(Pa) stands for the length of the desription of the loal part of the

network (i.e. the edges ingoing to X and the onditional distribution P (X|Pa))
and d(Pa) is the length of the ompressed version of X-values in D.

Let kY denote the ardinality of the set VY of possible values of the random

variable Y ∈ X. Thus we have

g(Pa) = |Pa| log n+
logN

2
(kX − 1)

∏

Y ∈Pa

kY

where

logN

2 is the number of bits we use for eah numeri parameter of the

onditional distribution. This formula satis�es Assumption 2 but fails to satisfy

Assumption 3. Therefore Algorithm 1 an be used to learn an optimal network,

but Algorithm 2 annot.

However, for many appliations we may assume that all random variables

have the same value set V of ardinality k. In this ase we obtain the formula

g(Pa) = |Pa| log n+
logN

2
(k − 1)k|Pa|

whih satis�es Assumption 3. For simpliity, we ontinue to work under this

assumption.

Compression with respet to the network model is understood as follows:

when enoding the X-values, the values of Pa-instanes are assumed to be

known. Thus the optimal enoding length is given by

d(Pa) = N ·H(X|Pa)

where H(X|Pa) = −
∑

v∈V

∑

v∈VPa P (v,v) logP (v|v) is the onditional en-

tropy of X given Pa (the distributions are estimated from D).

Sine all the assumptions from the previous setion are satis�ed, Algorithm

2 may be applied to learn the optimal network. Let us turn to the analysis of

its omplexity.

Theorem 3 The worst-ase time omplexity of Algorithm 2 for the MDL sore

is O(nlog
k
NN logk N).

MDL is almost idential to Bayesian Information Criterion (BIC) (see [8℄),

whih approximates Bayesian sores (see next setion). The only di�erene is

that the �rst element of the sum in the formula for the g omponent is omitted.

The above theorem applies to BIC as well.
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1.3 Bayesian-Dirihlet equivalene

The Bayesian-Dirihlet equivalene (BDe) soring riterion originates from Bayesian

statistis [1℄. Given a dataset D the optimal network struture G maximizes the

posterior onditional probability P (G|D). We have

P (G|D) ∝ P (G)P (D|G) = P (G)

∫

P (D|G, θ)P (θ|G)dθ

where P (G) and P (θ|G) are prior probability distributions on graph strutures

and onditional distributions' parameters, respetively, and P (D|G, θ) is evalu-
ated due to (1).

Hekerman et al. [6℄, following Cooper and Herskovits [1℄, identi�ed a set

of independene assumptions making possible deomposition of the integral in

the above formula into a produt over X. Under this ondition, together with

a similar one regarding deomposition of P (G), the soring riterion

S(G : D) = − logP (G)− logP (D|G)

obtained by taking− log of the above term satis�es Assumption 1. Moreover, the

deomposition s(Pa) = g(Pa) + d(Pa) of the loal sores appears as well, with
the omponents g and d derived from − logP (G) and − logP (D|G), respetively.

The distribution P ((X,E)) ∝
∏

e∈E
αe with penalty parameters 0 < αe <

1 is ommonly used as a prior over the network strutures. BNFinder sets

α(Y,X) = 1/kY by default. This hoie results in the funtion

g(Pa) =
∑

Y ∈Pa

log kY

satisfying Assumptions 2. If we moreover assume that all random variables have

the same value set V of ardinality k, we obtain the funtion

g(Pa) = |Pa| log k

satisfying also Assumption 3. For simpliity, we ontinue to work under this

assumption.

However, it should be notied that there are also used priors whih satisfy

neither Assumption 2 nor 3, e.g. P (G) ∝ α∆(G,G0)
, where ∆(G,G0) is the ar-

dinality of the symmetri di�erene between the sets of edges in G and in the

prior network G0.

The Dirihlet distribution is generally used as a prior over the onditional

distributions' parameters. It yields

d(Pa) = log





∏

v∈V|Pa|

Γ(
∑

v∈V(Hv,v +Nv,v))

Γ(
∑

v∈V Hv,v)

∏

v∈V

Γ(Hv,v)

Γ(Hv,v +Nv,v)





where Γ is the Gamma funtion, Nv,v denotes the number of samples in D
with X = v and Pa = v, and Hv,v is the orresponding hyperparameter of the

Dirihlet distribution.
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Setting all the hyperparameters to 1 yields

d(Pa) = log





∏

v∈V|Pa|

(k − 1 +
∑

v∈V Nv,v)!

(k − 1)!

∏

v∈V

1

Nv,v!



 =

=
∑

v∈V|Pa|

(

log(k − 1 +
∑

v∈V

Nv,v)!− log(k − 1)!−
∑

v∈V

logNv,v!

)

where k = |V|. For simpliity, we ontinue to work under this assumption

(following Cooper and Herskovits [1℄). The general ase may be handled in a

similar way.

The following result allows to re�ne the deomposition of the loal sore into

the sum of the omponents g and d.

Proposition 1 De�ne dmin =
∑

v∈V (log(k − 1 +Nv)!− log(k − 1)!− logNv!),
where Nv denotes the number of samples in D with X = v. Then d(Pa) ≥ dmin

for eah Pa ∈ X.

By the above proposition, the deomposition of the loal sore given by

s(Pa) = g′(Pa) + d′(Pa) with the omponents g′(Pa) = g(Pa) + dmin and

d′(Pa) = d(Pa) − dmin satis�es all the assumptions required by Algorithm 2.

Let us turn to the analysis of its omplexity.

Theorem 4 The worst-ase time omplexity of Algorithm 2 for the BDe sore

with the deomposition of the loal sore given by s(Pa) = g′(Pa) + d′(Pa) is

O(nN log
α−1 kN2 logα−1 k).

1.4 Mutual information test

The Mutual Information Test (MIT) soring riterion originates from the on-

ept of mutual information, belonging to the family of measures based on infor-

mation theory [2℄. Brie�y speaking, this method ombines mutual information

measure and a statistial independene test based on the hi-square dustribution

assosiated with it. The goodness of a �t of the partiular network is omputed

as the total mutual information between eah node and its parents. This sore is

then penalized by a term orresponding to the degree of statistial signi�ane

of the shared information.

Let D be a dataset with N observations, G be the dynami bayesian network.

Let X = {X1, ..., Xn} be the set of n variables, with eah of it orresponding

to {r1, ..., rn} disrete states. Let's denote the set of parents of Xi in G with

orresponding {ri1, ..., risi} disrete states as Pai = {Xi1, ..., Xisi}. Then the

MIT sore is de�ned as follows [10℄:

S(G : D) =
n
∑

i=0;Pai 6=∅

{2N · I(Xi,Pai)−

si
∑

j=1

χαliσi(j)}
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In this formula I(Xi,Pai) denotes the mutual information between Xi and

its parents as estimated from D and de�ned as

I(X;Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log

(

p(x, y)

p(x)p(y)

)

χαliσi(j) is the hi-square distribution at signi�ane level 1 − α. It is de�ned

as the value suh that

p(χ2(lij) ≤ χαlij) = α

The term liσi(j) denotes the degrees of freedom and is de�ned as

liσi(j) =

{

(ri − 1)(riσi(j) − 1)
∏j−1

k=1 riσi(k), j = 2.., si.

(ri − 1)(riσi(j) − 1), j = 1.

where σi = {σi(1), ..., σi(si)} is any permutation of the index set {1...si} of Pai

suh that, the number of states of the variables dereases with the inreasing

position in the permutation.

Reall the deomposition SMIT (Pai) = dMIT (Pai) + gMIT (Pai). In this

ase:

dMIT (Pai) = 2N · I(Xi,X)− 2N · I(Xi,Pai)

gMIT (Pai) =

si
∑

j=1

χαliσi(j)

Roughly, dMIT measures the auray of representing the joint distribution

of D by G while gMIT measures the omplexity of this representation. This

deomposition satis�es Assumption 2. However, MIT sore de�ned in this way

does not satisfy Assumption 3. Therefore, we introdue an assumption that all

the variables have the same number of disrete states.

Assumption 4 (uniformity) All variables in X have the same number of dis-

rete states k.

Under this assumption it an be easily shown that gMIT satis�es Assumption

3.

Theorem 5 [9℄ The worst-ase time omplexity of Algorithm 2 for the MIT

sore under the assumption of the variables uniformity is polynomial in the

number of variables.

1.5 Continuous variables

All the soring funtions implemented in BNFinder (MDL, BIC, BDe and MIT)

were originally designed for disrete variables. In order to avoid arbitrary dis-

retization of ontinuous data we adapted them to deal with ontinuous variables
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diretly. Moreover, our method works also with heterogenous data sets joining

together disrete and ontinuous variables.

The distribution of eah ontinuous variable X is assumed to be a mixture of

two normal distributions. Mixture omponents orrespond to the two possible

values (low and high) of a related hidden disrete variable X ′
and X is viewed

as its observable re�etion. Consequently, the onditional distributions of X is

given by:

P (X|Pa) =
∑

v∈{low,high}

∑

v∈{low,high}|Pa|

P (X|X ′ = v)P (X ′ = v|Pa
′ = v)P (Pa

′ = v|Pa)

Conditional distributions P (X|X ′) are assumed to be independent for all

variables X. Thus we estimate their parameters separately for eah X in a

preproessing step. Estimation is based on data lustering with the k-means

algorithm (k = 2, utting the set of variable values in the median yields initial

lusters). Due to the independene assumption, these parameters enable us to

alulate also P (Pa
′|Pa) =

∏

Y ∈Pa
P (Y ′|Y ). Thus the spae of possible on-

ditional distributions on ontinuous variables forms a family of Gaussian mix-

tures, parameterized by P (X ′|Pa
′), onditional distributions on orresponding

disrete variables.

From a tehnial point of view, BNFinder learns optimal network stru-

tures for these disrete variables, using soring funtions adapted to handle

distributions on variable values instead of their determined values (expeted

values of original sores are omputed). For ontinuous variables it gives op-

timal Bayesian networks from among all networks with onditional probability

distributions belonging to the above de�ned family of Gaussian mixtures.

The following results present the omplexity of our algorithm with ontinu-

ous MDL and BDe soring funtions.

Theorem 6 The worst-ase time omplexity of Algorithm 2 for the ontinuous

MDL sore is O(nlogNN2).

Theorem 7 The worst-ase time omplexity of Algorithm 2 for the ontinuous

BDe sore with the deomposition of the loal sore given by s(Pa) = g′(Pa) +

d′(Pa) is O((2n)
N

log α−1 N).

1.6 Network density ontrol

Reall that soring funtions deompose into 2 omponents: g penalizing the

omplexity of a network and d evaluating the possibility of explaining data by

a network. The balane between these omponents in�uenes the reliability of

reonstruted relationships between variables � high g-to-d ratio results in high

spei�ity, while low g-to-d ratio yields high sensitivity.

BNFinder has 3 mehanisms ontrolling this balane:

1. Option -d diretly multiplies g-to-d ratio by a uniform fator for all pairs

of variables.
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2. Options -r and -u set g-to-d ratios for all edges aording to spei�ed

proportion of false positive edges or of regulons having false positive reg-

ulators (thus ontrolling type I error rate). It is partiularly useful for

heterogeneous sets of potential parents (ontinuous and disrete, disrete

with varying levels of disretization), when di�erent types of variables

require spei� treatment.

3. Input dataset preamble ommands #prioredge and #priorvert modify

g-to-d ratios for spei�ed network edges. They are intended to inorpo-

rate into the learning proess prior knowledge regarding possible variable

dependenies. This method may be ombined with one of previous meh-

anisms.

Option -d modi�es g-to-d ratio by virtual dataset multipliation. Remaining

two mehanisms adjust omponents g of the soring funtion. It is done through
rede�ning the formula for g by raising parameters kY , the number of disretiza-
tion levels of a potential parent Y to appropriate powers wY,X (in the ase of

BDe, it is just a modi�ation of a prior distribution over network strutures).

Exponents wY,X are either adjusted to required type I error rate or spei�ed in

the preamble of a dataset. They must satisfy wY,X > 0, default values wY,X = 1
result in the original formula for g omponent.

The ontrol of type I error rate is based on a statistial model for 1-element

set of potential parents and extrapolated to all sets. In the 1-element ase there

are only 2 potential parent sets: ∅ and {Y }, where Y is the only potential parent

of onsidered regulated variableX. First, BNFinder alulates the required type

I error probability for edge (Y,X). When no prior distribution on the network

struture is spei�ed in the dataset preamble, all edge error probabilities equal

the requested type I error rate. Otherwise they are weighted aording to the

inverses of prior parameters.

Under a null hypothesis H0 that variables X and Y are independent, type

I error ours when s({Y }) < s(∅). We de�ne ZY,X = d({Y }) − d(∅) and

zY,X = g(∅) − g({Y }). Thus s({Y }) < s(∅) if and only if ZY,X < zY,X . Note

that ZY,X is a funtion of dataset values of random variables X and Y , so it is

a random variable too. On the other hand, zY,X is independent of the data and

monotonially depends on wY,X .

BNFinder randomly permutes values of Y in the dataset and alulates ZY,X

for eah permutation. The number of permutations is hosen aording to re-

quested type I error probability and the dataset size. Moreover, it may be man-

ually shrunk to avoid exhaustive omputations. The estimate of umulative

distribution funtion for ZY,X under H0 assumption is derived from alulated

values and dmin − d(∅), the lower bound on ZY,X . Based on this distribution

BNFinder adjusts wY,X to yield P (ZY,X < zY,X |H0) equal to the required type

I error probability for edge (Y,X).
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