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1 Supplementary methods

In the present se
tion we give a brief exposition of the algorithm implemented

in BNFinder and its 
omputational 
ost for two generally used s
oring 
riteria:

Minimal Des
ription Length and Bayesian-Diri
hlet equivalen
e. For a fuller

treatment, in
luding detailed proofs, we refer the reader to [3, 4℄.

1.1 Polynomial-time exa
t algorithm

A Bayesian network (BN) N is a representation of a joint distribution of a set

of dis
rete random variables X = {X1, . . . , Xn}. The representation 
onsists of

two 
omponents:

• a dire
ted a
y
li
 graph G = (X,E) en
oding 
onditional (in-)dependen
ies

• a family θ of 
onditional distributions P (Xi|Pai), where

Pai = {Y ∈ X|(Y,Xi) ∈ E}

The joint distribution of X is given by

P (X) =
n
∏

i=1

P (Xi|Pai) (1)
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The problem of learning a BN is understood as follows: given a multiset

of X-instan
es D = {x1, . . . ,xN} �nd a network graph G that best mat
hes

D. The notion of a good mat
h is formalized by means of a s
oring fun
tion

S(G : D) having positive values and minimized for the best mat
hing network.

Thus the point is to �nd a dire
ted a
y
li
 graph G with the set of verti
es X

minimizing S(G : D).
The BNFinder program is devoted to the 
ase when there is no need to

examine the a
y
li
ity of the graph, for example:

• When dealing with dynami
 Bayesian networks. A dynami
 BN des
ribes

sto
hasti
 evolution of a set of random variables over dis
retized time.

Therefore 
onditional distributions refer to random variables in neighbor-

ing time points. The a
y
li
ity 
onstraint is relaxed, be
ause the �unrolled�

graph (with a 
opy of ea
h variable in ea
h time point) is always a
y
li


(see [5℄ for more details). The following 
onsiderations apply to dynami


BNs as well.

• In 
ase of stati
 Bayesian Networks, the user has to supply the algorithm

with a partial ordering of the verti
es, restri
ting the set of possible edges

only to the ones 
onsistent with the ordering. BNFinder lets the user to

divide the set of variables into an ordered set of disjoint subsets of vari-

ables, where edges 
an only exist between variables from di�erent subsets

and they have to be 
onsistent with the ordering. If su
h ordering is not

known beforehand, one 
an try to run BNFinder with di�erent orderings

and 
hoose a network with the best overall s
ore.

In the sequel we 
onsider some assumptions on the form of a s
oring fun
tion.

The �rst one states that S(G : D) de
omposes into a sum over the set of random

variables of lo
al s
ores, depending on the values of a variable and its parents

in the graph only.

Assumption 1 (additivity) S(G : D) =
∑n

i=1 s(Xi,Pai : D|{Xi}∪Pai
), where

D|Y denotes the restri
tion of D to the values of the members of Y ⊆ X.

When there is no need to examine the a
y
li
ity of the graph, this assumption

allows to 
ompute the parents set of ea
h variable independently. Thus the point

is to �nd Pai minimizing s(Xi,Pai : D|{Xi}∪Pai
) for ea
h i.

Let us �x a dataset D and a random variable X. We denote by X
′
the set of

potential parents of X (possibly smaller than X due to given 
onstraints on the

stru
ture of the network). To simplify the notation we 
ontinue to write s(Pa)
for s(X,Pa : D|{X}∪Pa).

The following assumption expresses the fa
t that s
oring fun
tions de
om-

pose into 2 
omponents: g penalizing the 
omplexity of a network and d evalu-

ating the possibility of explaining data by a network.

Assumption 2 (splitting) s(Pa) = g(Pa) + d(Pa) for some fun
tions g, d :
P(X) → R

+
satisfying Pa ⊆ Pa

′ =⇒ g(Pa) ≤ g(Pa
′).
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This assumption is used in the following algorithm to avoid 
onsidering net-

works with inadequately large 
omponent g.

Algorithm 1

1. Pa := ∅

2. for ea
h P ⊆ X
′

hosen a

ording to g(P)

(a) if s(P) < s(Pa) then Pa := P

(b) if g(P) ≥ s(Pa) then return Pa; stop

In the above algorithm 
hoosing a

ording to g(P) means 
hoosing in
reas-

ingly with respe
t to the value of the 
omponent g of the lo
al s
ore.

Theorem 1 Suppose that the s
oring fun
tion satis�es Assumptions 1-2. Then

Algorithm 1 applied to ea
h random variable �nds an optimal network.

A disadvantage of the above algorithm is that �nding a proper subset P ⊆ X
′

involves 
omputing g(P′) for all ⊆-su

essors P
′
of previously 
hosen subsets.

It may be avoided when a further assumption is imposed.

Assumption 3 (uniformity) |Pa| = |Pa
′| =⇒ g(Pa) = g(Pa

′).

The above assumption suggests the notation ĝ(|Pa|) = g(Pa). The following
algorithm uses the uniformity of g to redu
e the number of 
omputations of the


omponent g.

Algorithm 2

1. Pa := ∅

2. for p = 1 to n

(a) if ĝ(p) ≥ s(Pa) then return Pa; stop

(b) P = argmin{Y⊆X′:|Y|=p}s(Y)

(
) if s(P) < s(Pa) then Pa := P

Theorem 2 Suppose that the s
oring fun
tion satis�es Assumptions 1-3. Then

Algorithm 2 applied to ea
h random variable �nds an optimal network.
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1.2 Minimal Des
ription Length and Bayesian Informa-

tion Criterion

The Minimal Des
ription Length (MDL) s
oring 
riterion originates from infor-

mation theory [7℄. A network N is viewed here as a model of 
ompression of

a dataset D. The optimal model minimizes the total length of the des
ription,

i.e. the sum of the des
ription length of the model and of the 
ompressed data.

Let us �x a dataset D = {x1, . . . ,xN} and a random variable X. Re
all the

de
omposition s(Pa) = g(Pa) + d(Pa) of the lo
al s
ore for X. In the MDL

s
ore g(Pa) stands for the length of the des
ription of the lo
al part of the

network (i.e. the edges ingoing to X and the 
onditional distribution P (X|Pa))
and d(Pa) is the length of the 
ompressed version of X-values in D.

Let kY denote the 
ardinality of the set VY of possible values of the random

variable Y ∈ X. Thus we have

g(Pa) = |Pa| log n+
logN

2
(kX − 1)

∏

Y ∈Pa

kY

where

logN

2 is the number of bits we use for ea
h numeri
 parameter of the


onditional distribution. This formula satis�es Assumption 2 but fails to satisfy

Assumption 3. Therefore Algorithm 1 
an be used to learn an optimal network,

but Algorithm 2 
annot.

However, for many appli
ations we may assume that all random variables

have the same value set V of 
ardinality k. In this 
ase we obtain the formula

g(Pa) = |Pa| log n+
logN

2
(k − 1)k|Pa|

whi
h satis�es Assumption 3. For simpli
ity, we 
ontinue to work under this

assumption.

Compression with respe
t to the network model is understood as follows:

when en
oding the X-values, the values of Pa-instan
es are assumed to be

known. Thus the optimal en
oding length is given by

d(Pa) = N ·H(X|Pa)

where H(X|Pa) = −
∑

v∈V

∑

v∈VPa P (v,v) logP (v|v) is the 
onditional en-

tropy of X given Pa (the distributions are estimated from D).

Sin
e all the assumptions from the previous se
tion are satis�ed, Algorithm

2 may be applied to learn the optimal network. Let us turn to the analysis of

its 
omplexity.

Theorem 3 The worst-
ase time 
omplexity of Algorithm 2 for the MDL s
ore

is O(nlog
k
NN logk N).

MDL is almost identi
al to Bayesian Information Criterion (BIC) (see [8℄),

whi
h approximates Bayesian s
ores (see next se
tion). The only di�eren
e is

that the �rst element of the sum in the formula for the g 
omponent is omitted.

The above theorem applies to BIC as well.

4



1.3 Bayesian-Diri
hlet equivalen
e

The Bayesian-Diri
hlet equivalen
e (BDe) s
oring 
riterion originates from Bayesian

statisti
s [1℄. Given a dataset D the optimal network stru
ture G maximizes the

posterior 
onditional probability P (G|D). We have

P (G|D) ∝ P (G)P (D|G) = P (G)

∫

P (D|G, θ)P (θ|G)dθ

where P (G) and P (θ|G) are prior probability distributions on graph stru
tures

and 
onditional distributions' parameters, respe
tively, and P (D|G, θ) is evalu-
ated due to (1).

He
kerman et al. [6℄, following Cooper and Herskovits [1℄, identi�ed a set

of independen
e assumptions making possible de
omposition of the integral in

the above formula into a produ
t over X. Under this 
ondition, together with

a similar one regarding de
omposition of P (G), the s
oring 
riterion

S(G : D) = − logP (G)− logP (D|G)

obtained by taking− log of the above term satis�es Assumption 1. Moreover, the

de
omposition s(Pa) = g(Pa) + d(Pa) of the lo
al s
ores appears as well, with
the 
omponents g and d derived from − logP (G) and − logP (D|G), respe
tively.

The distribution P ((X,E)) ∝
∏

e∈E
αe with penalty parameters 0 < αe <

1 is 
ommonly used as a prior over the network stru
tures. BNFinder sets

α(Y,X) = 1/kY by default. This 
hoi
e results in the fun
tion

g(Pa) =
∑

Y ∈Pa

log kY

satisfying Assumptions 2. If we moreover assume that all random variables have

the same value set V of 
ardinality k, we obtain the fun
tion

g(Pa) = |Pa| log k

satisfying also Assumption 3. For simpli
ity, we 
ontinue to work under this

assumption.

However, it should be noti
ed that there are also used priors whi
h satisfy

neither Assumption 2 nor 3, e.g. P (G) ∝ α∆(G,G0)
, where ∆(G,G0) is the 
ar-

dinality of the symmetri
 di�eren
e between the sets of edges in G and in the

prior network G0.

The Diri
hlet distribution is generally used as a prior over the 
onditional

distributions' parameters. It yields

d(Pa) = log





∏

v∈V|Pa|

Γ(
∑

v∈V(Hv,v +Nv,v))

Γ(
∑

v∈V Hv,v)

∏

v∈V

Γ(Hv,v)

Γ(Hv,v +Nv,v)





where Γ is the Gamma fun
tion, Nv,v denotes the number of samples in D
with X = v and Pa = v, and Hv,v is the 
orresponding hyperparameter of the

Diri
hlet distribution.
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Setting all the hyperparameters to 1 yields

d(Pa) = log





∏

v∈V|Pa|

(k − 1 +
∑

v∈V Nv,v)!

(k − 1)!

∏

v∈V

1

Nv,v!



 =

=
∑

v∈V|Pa|

(

log(k − 1 +
∑

v∈V

Nv,v)!− log(k − 1)!−
∑

v∈V

logNv,v!

)

where k = |V|. For simpli
ity, we 
ontinue to work under this assumption

(following Cooper and Herskovits [1℄). The general 
ase may be handled in a

similar way.

The following result allows to re�ne the de
omposition of the lo
al s
ore into

the sum of the 
omponents g and d.

Proposition 1 De�ne dmin =
∑

v∈V (log(k − 1 +Nv)!− log(k − 1)!− logNv!),
where Nv denotes the number of samples in D with X = v. Then d(Pa) ≥ dmin

for ea
h Pa ∈ X.

By the above proposition, the de
omposition of the lo
al s
ore given by

s(Pa) = g′(Pa) + d′(Pa) with the 
omponents g′(Pa) = g(Pa) + dmin and

d′(Pa) = d(Pa) − dmin satis�es all the assumptions required by Algorithm 2.

Let us turn to the analysis of its 
omplexity.

Theorem 4 The worst-
ase time 
omplexity of Algorithm 2 for the BDe s
ore

with the de
omposition of the lo
al s
ore given by s(Pa) = g′(Pa) + d′(Pa) is

O(nN log
α−1 kN2 logα−1 k).

1.4 Mutual information test

The Mutual Information Test (MIT) s
oring 
riterion originates from the 
on-


ept of mutual information, belonging to the family of measures based on infor-

mation theory [2℄. Brie�y speaking, this method 
ombines mutual information

measure and a statisti
al independen
e test based on the 
hi-square dustribution

assosiated with it. The goodness of a �t of the parti
ular network is 
omputed

as the total mutual information between ea
h node and its parents. This s
ore is

then penalized by a term 
orresponding to the degree of statisti
al signi�
an
e

of the shared information.

Let D be a dataset with N observations, G be the dynami
 bayesian network.

Let X = {X1, ..., Xn} be the set of n variables, with ea
h of it 
orresponding

to {r1, ..., rn} dis
rete states. Let's denote the set of parents of Xi in G with


orresponding {ri1, ..., risi} dis
rete states as Pai = {Xi1, ..., Xisi}. Then the

MIT s
ore is de�ned as follows [10℄:

S(G : D) =
n
∑

i=0;Pai 6=∅

{2N · I(Xi,Pai)−

si
∑

j=1

χαliσi(j)}
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In this formula I(Xi,Pai) denotes the mutual information between Xi and

its parents as estimated from D and de�ned as

I(X;Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log

(

p(x, y)

p(x)p(y)

)

χαliσi(j) is the 
hi-square distribution at signi�
an
e level 1 − α. It is de�ned

as the value su
h that

p(χ2(lij) ≤ χαlij) = α

The term liσi(j) denotes the degrees of freedom and is de�ned as

liσi(j) =

{

(ri − 1)(riσi(j) − 1)
∏j−1

k=1 riσi(k), j = 2.., si.

(ri − 1)(riσi(j) − 1), j = 1.

where σi = {σi(1), ..., σi(si)} is any permutation of the index set {1...si} of Pai

su
h that, the number of states of the variables de
reases with the in
reasing

position in the permutation.

Re
all the de
omposition SMIT (Pai) = dMIT (Pai) + gMIT (Pai). In this


ase:

dMIT (Pai) = 2N · I(Xi,X)− 2N · I(Xi,Pai)

gMIT (Pai) =

si
∑

j=1

χαliσi(j)

Roughly, dMIT measures the a

ura
y of representing the joint distribution

of D by G while gMIT measures the 
omplexity of this representation. This

de
omposition satis�es Assumption 2. However, MIT s
ore de�ned in this way

does not satisfy Assumption 3. Therefore, we introdu
e an assumption that all

the variables have the same number of dis
rete states.

Assumption 4 (uniformity) All variables in X have the same number of dis-


rete states k.

Under this assumption it 
an be easily shown that gMIT satis�es Assumption

3.

Theorem 5 [9℄ The worst-
ase time 
omplexity of Algorithm 2 for the MIT

s
ore under the assumption of the variables uniformity is polynomial in the

number of variables.

1.5 Continuous variables

All the s
oring fun
tions implemented in BNFinder (MDL, BIC, BDe and MIT)

were originally designed for dis
rete variables. In order to avoid arbitrary dis-


retization of 
ontinuous data we adapted them to deal with 
ontinuous variables
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dire
tly. Moreover, our method works also with heterogenous data sets joining

together dis
rete and 
ontinuous variables.

The distribution of ea
h 
ontinuous variable X is assumed to be a mixture of

two normal distributions. Mixture 
omponents 
orrespond to the two possible

values (low and high) of a related hidden dis
rete variable X ′
and X is viewed

as its observable re�e
tion. Consequently, the 
onditional distributions of X is

given by:

P (X|Pa) =
∑

v∈{low,high}

∑

v∈{low,high}|Pa|

P (X|X ′ = v)P (X ′ = v|Pa
′ = v)P (Pa

′ = v|Pa)

Conditional distributions P (X|X ′) are assumed to be independent for all

variables X. Thus we estimate their parameters separately for ea
h X in a

prepro
essing step. Estimation is based on data 
lustering with the k-means

algorithm (k = 2, 
utting the set of variable values in the median yields initial


lusters). Due to the independen
e assumption, these parameters enable us to


al
ulate also P (Pa
′|Pa) =

∏

Y ∈Pa
P (Y ′|Y ). Thus the spa
e of possible 
on-

ditional distributions on 
ontinuous variables forms a family of Gaussian mix-

tures, parameterized by P (X ′|Pa
′), 
onditional distributions on 
orresponding

dis
rete variables.

From a te
hni
al point of view, BNFinder learns optimal network stru
-

tures for these dis
rete variables, using s
oring fun
tions adapted to handle

distributions on variable values instead of their determined values (expe
ted

values of original s
ores are 
omputed). For 
ontinuous variables it gives op-

timal Bayesian networks from among all networks with 
onditional probability

distributions belonging to the above de�ned family of Gaussian mixtures.

The following results present the 
omplexity of our algorithm with 
ontinu-

ous MDL and BDe s
oring fun
tions.

Theorem 6 The worst-
ase time 
omplexity of Algorithm 2 for the 
ontinuous

MDL s
ore is O(nlogNN2).

Theorem 7 The worst-
ase time 
omplexity of Algorithm 2 for the 
ontinuous

BDe s
ore with the de
omposition of the lo
al s
ore given by s(Pa) = g′(Pa) +

d′(Pa) is O((2n)
N

log α−1 N).

1.6 Network density 
ontrol

Re
all that s
oring fun
tions de
ompose into 2 
omponents: g penalizing the


omplexity of a network and d evaluating the possibility of explaining data by

a network. The balan
e between these 
omponents in�uen
es the reliability of

re
onstru
ted relationships between variables � high g-to-d ratio results in high

spe
i�
ity, while low g-to-d ratio yields high sensitivity.

BNFinder has 3 me
hanisms 
ontrolling this balan
e:

1. Option -d dire
tly multiplies g-to-d ratio by a uniform fa
tor for all pairs

of variables.
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2. Options -r and -u set g-to-d ratios for all edges a

ording to spe
i�ed

proportion of false positive edges or of regulons having false positive reg-

ulators (thus 
ontrolling type I error rate). It is parti
ularly useful for

heterogeneous sets of potential parents (
ontinuous and dis
rete, dis
rete

with varying levels of dis
retization), when di�erent types of variables

require spe
i�
 treatment.

3. Input dataset preamble 
ommands #prioredge and #priorvert modify

g-to-d ratios for spe
i�ed network edges. They are intended to in
orpo-

rate into the learning pro
ess prior knowledge regarding possible variable

dependen
ies. This method may be 
ombined with one of previous me
h-

anisms.

Option -d modi�es g-to-d ratio by virtual dataset multipli
ation. Remaining

two me
hanisms adjust 
omponents g of the s
oring fun
tion. It is done through
rede�ning the formula for g by raising parameters kY , the number of dis
retiza-
tion levels of a potential parent Y to appropriate powers wY,X (in the 
ase of

BDe, it is just a modi�
ation of a prior distribution over network stru
tures).

Exponents wY,X are either adjusted to required type I error rate or spe
i�ed in

the preamble of a dataset. They must satisfy wY,X > 0, default values wY,X = 1
result in the original formula for g 
omponent.

The 
ontrol of type I error rate is based on a statisti
al model for 1-element

set of potential parents and extrapolated to all sets. In the 1-element 
ase there

are only 2 potential parent sets: ∅ and {Y }, where Y is the only potential parent

of 
onsidered regulated variableX. First, BNFinder 
al
ulates the required type

I error probability for edge (Y,X). When no prior distribution on the network

stru
ture is spe
i�ed in the dataset preamble, all edge error probabilities equal

the requested type I error rate. Otherwise they are weighted a

ording to the

inverses of prior parameters.

Under a null hypothesis H0 that variables X and Y are independent, type

I error o

urs when s({Y }) < s(∅). We de�ne ZY,X = d({Y }) − d(∅) and

zY,X = g(∅) − g({Y }). Thus s({Y }) < s(∅) if and only if ZY,X < zY,X . Note

that ZY,X is a fun
tion of dataset values of random variables X and Y , so it is

a random variable too. On the other hand, zY,X is independent of the data and

monotoni
ally depends on wY,X .

BNFinder randomly permutes values of Y in the dataset and 
al
ulates ZY,X

for ea
h permutation. The number of permutations is 
hosen a

ording to re-

quested type I error probability and the dataset size. Moreover, it may be man-

ually shrunk to avoid exhaustive 
omputations. The estimate of 
umulative

distribution fun
tion for ZY,X under H0 assumption is derived from 
al
ulated

values and dmin − d(∅), the lower bound on ZY,X . Based on this distribution

BNFinder adjusts wY,X to yield P (ZY,X < zY,X |H0) equal to the required type

I error probability for edge (Y,X).
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