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1.1 Installation

The BNF software uses setuptools, which is the standard library for packaging python software. After downloading
the archive containing the current version of BNF, you should extract it to a directory of choice. In unix-like systems
you can do it by typing

tar -xzf bnf-0.1.tgz

Once you have the sources extracted, the installation is performed by a single command

python setup.py install

in the source directory (it may require the administrator privileges).

This installs the BNfinder library to an apropriate location for your python interpreter, and a bnf script which may be
accessed from a command line.

1.2 Usage

BNfinder can be executed by typing

> bnf <options>

The following options are available:

-h, -help
print out a brief summary of options and exit

-e, -expr <file>
load learning data from <file> (this option is obligatory)

-s, -score <name>
learn with <name> scoring criterion; possible names are BDE (default) and MDL

-l, -limit <number>
limit the search space to networks with at most <number> parents for each vertex

-i, -suboptimal <number>
compute <number> best scored parents sets for each vertex (default 1)

-d, -data-factor <number>
multiply (each item of) the dataset <number> times (default 1); this option may be used to change the propor-
tion between d and g components of the scoring function (see the definition of the splitting assumption)

-v, -verbose
print out communicates on standard output

-p, -prior-pseudocount <number>
set the pseudocounts of data items with specified values of a vertex and its parents set to <number>

|V||Pa|+1 (resulting
in the total pseudocount equal to <number>) – this method follows Heckerman et al [5]; when the option
is unspecified, all pseudocounts are set to 1, following Cooper and Herskovitz [1]; pseudocounts are used as
hyperparameters of the Dirichlet priors of the BDE scoring criterion and also in the estimation of the conditional
probability distributions (CPDs) of learned network
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-n, -net <file>
write the learned network graph to <file> in the SIF format

-t, -txt <file>
write the learned suboptimal parents sets to <file>

-b, -bif <file>
write the learned Bayesian network to <file> in the BIF format

-c, -cpd <file>
write the learned Bayesian network to <file> as a Python dictionary

1.3 Input format

The learning data must be passed to BNfinder in a text file splitted into 3 parts: preamble, experiment specification
and experiment data. The preamble allows user to specify some features of data and/or network, while the next two
parts contain the learning data, essentially formatted as a table with space- or tab-separated values.

Preamble

The preamble allows specifying experiment peturbations, structural constraints, vertex value types, vertex CPD types
and edge weights. Each line in the preamble has the following form:

#<command> <arguments>

Experiments with perturbed values of some vertices carry no information regarding their regulatory mechanism. Thus
including these experiments data in learning parents of their perturbed vertices biases the result (see [3] for a detailed
treatment). The following command handles perturbations:

#perturbed <experiment/serie> <vertex list>
omit data from experiment (serie of experiments in the case of dynamic networks) <experiment/serie>
when learning parents of vertices from <vertex list>

One possible way of specifying structural constraints with BNfinder is to list potential parents of particular vertices.
An easier method is available for constraints of the cascade form, where the vertex set is splitted into a sequence of
groups and each parent of a vertex must belong to one of previous groups (a simple but extremely useful example is a
cascade with 2 groups: regulators and regulatees). There are 2 commands specifying structural constraints:

#parents <vertex> <vertex list>
restrict the set of potential parents of <vertex> to <vertex list>.

#regulators <vertex list>
restrict the set of potential parents of all vertices except specified with #parents command or with previ-
ous or present #regulators command to vertices included in <vertex list> of previous or present
#regulators command.

Note that structural constraints forcing network’s acyclicity are necessery for learning a static Bayesian network with
BNfinder.

Vertex value types may be specified with the following commands:

#discrete <vertex> <value list>
let <value list> be possible values of <vertex>
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#continuous <vertex list>
let float numbers be possible values of all vertices in <vertex list>

#default <value list>
let <value list> be possible values of all vertices except specified with #discrete or #continuous
command (when <value list> is FLOAT, float numbers are possible values)

Values in <value list> may be integers or words (strings without whitespaces). When some vertices are left
unspecified, BNfinder tries to recognize their possible value sets. However it may miss, in particular when some float
numbers are written in integer format or when some possible values are not represented in the dataset (note that the
size of the set of possible values affects the score).

The space of possible CPDs of some vertices given their parents may be restricted to noisy-and or noisy-or distribu-
tions. In this case, the sets of possible values of these vertices and their potential parents must be either {0, 1} or float
numbers. Moreover, BNfinder should be executed with the MDL scoring criterion. The following commands specify
vertices with noisy CPDs:

#and <vertex list>
restrict the space of possible CPDs of vertices from <vertex list> to noisy-and distributions

#or <vertex list>
restrict the space of possible CPDs of vertices from <vertex list> to noisy-or distributions

The following commands set prior weights on network edges:

#prioredge <vertex> <weight> <vertex list>
set the prior weights of all edges originating from vertices from <vertex list> and aiming at <vertex>
to <weight>

#priorvert <weight> <vertex list>
set the prior weights of all edges originating from vertices from <vertex list> (except specified in
<prioredge> command) to <weight>

Weights must be positive float numbers. Edges with greater weights are penalized harder. The default weight is 1.

Experiment specification

The experiment specification has the following form:

<name> <experiment list>

where <name> is a word starting with a symbol other then #. The form of experiment names depends on the data
type and, consequently, on the type of learned network:

• When the dataset consists of results of independent experiments and a static Bayesian network is to be learned,
experiment names are words without the symbol ’:’.

• When the dataset consists of results of time series experiments and a dynamic Bayesian network is to be learned,
experiment names have the form <serie>:<condition>. Each serie must be ordered according to the
condition times and cannot be interrupted by experiments from other series.
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Experiment data

Each line of the experiment data part has the following form:

<vertex> <value list>

where <vertex> is a word and values are listed in the order corresponding to <experiment list>.

1.4 Output formats

SIF format

The SIF (Simple Interaction File), usually contained in files with .sif extension is the simplest of the supported
formats and carries only information on the topology of the network. In this format, each line represents the fact of
a single interaction. In our case such interaction represents the fact that one variable depends on some other variable.
Each line contains three values:

• Parent variable identifier,

• type of interaction (currently +/- is reported when positive or negative correlation between variables is found,
if BNfinder is run with -i option and reports more than 1 suboptimal network, the edge labels represent sum of
posterior probabilities obtained by parent sets including that edge.

• Child variable identifier.

To show it by example, the file:

A + B
B - C

Describes a network of the following shape:
A →+ B →− C.

The main advantage of this format is that it can be read by the Cytoscape (http://cytoscape.org) software
allowing for quick visualization. It is also trivial to use such data in one’s own software.

Suboptimal parents sets

Suboptimal parents sets are written to a file in a simple text format splitted into sections representing the sets of the
parents of each vertex. Each section contains a leading line with the vertex name followed by lines representing its
consecutive suboptimal parents sets. Each of these lines has the form:

<relative probability> <vertex list>

were <relative probability> is the ratio of the set’s posterior probability to the posterior probability of the
empty parents set and <vertex list> contains the elements of the set. Lines are ordered decreasingly according
to <relative probability>.

To show it by example, the section:
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C
2.333333 B
1.000000
0.592593 B A

reports 3 most probable parents sets of the vertex C: {B}, ∅, {B,A}. Moreover, it states that {B} is 2.333333 times
more probable than the empty set and the corresponding ratio for {B,A} equals 0.592593.

BIF format

Bayesian Interchange Format (BIF) is a simple text format dedicated to Bayesian networks. It is supported in some
BN applications (e.g. JavaBayes, Bayes Networks Editor) and may be easily converted with available tools to other
popular formats (including XML formats and BNT format of K. Murphy’s Bayes Net Toolbox). BNfinder writes
learned networks in BIF version 0.15.

Python dictionary

A network saved in <file> as a dictionary may be loaded to your Python environment by

eval(open(<file>).read())

The dictionary consists of items corresponding to all network’s vertices. Each item has the following form:

<vertex name> : <vertex dictionary>

Vertex dictionaries have the following items:

’vals’ : <value list>

’pars’ : <parent list>

’type’ : <CPD type>
(only for vertices with noisy CPDs, possible values of <CPD type> are ’and’ and ’or’)

’cpds’ : <CPD dictionary>

The form of the vertex CPD dictionary depends on the vertex type. In the case of noisy CPD, the dictionary items have
the following form:

<vertex name> : <probability>
which means (in the case of noisy-and/-or distribution) that the considered vertex is assigned value 1/0 with
<probability> given all its parents but <vertex name> equal 1/0

In the case of general CPD, the dictionary has items of the following form:

<value vector> : <distribution dictionary>
where <value vector> is a tuple of parents’ values and the distribution of the considered vertex given
<parent list> = <value vector> is defined in <distribution dictionary> in the follow-
ing way:

<value> : <probability>
means that the vertex is assigned <value> with <probability>
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None : <probability>
means that the vertex is assigned with <probability> each of its possible values unspecified in a
separate item

None : <probability>
means that given <parent list> equal to a value vector unspecified in a separate item the vertex is assigned
each of its possible values with <probability>

Standard output

When BNfinder is executed from a command line with the option -v, it prints out communicates related to its current
action: loading data, learning regulators of consecutive vertices and writing output files. Moreover, after finishing
computations for a vertex its predicted best parents sets and their scores are reported and after finishing computations
for all vertices BNfinder reports the score and structure of the optimal network.

2 Tutorial

This short tutorial presents the most common possible uses of the BNfinder software. The first part of this tutorial
is devoted to presenting possible options of the software an the input files on simplistic, synthetic examples. In the
second part, we provide more realistic examples taken from published studies of data for inferring dynamic and static
networks.

In this tutorial, we will assume that you are using the standalone BNfinder application as downloaded from
http://bioputer.mimuw.edu.pl/software/bnf, however if you want, you can also try out these examples with our web-
server at http://bioputer.mimuw.edu.pl/BIAS/BNFinder.

If you have any questions regarding this document or the described software, please contact us: bartek@mimuw.edu.pl
or dojer@mimuw.edu.pl

2.1 Synthetic examples

This section shows on several simple networks, how to prepare datasets and set the parameters for network reconstruc-
tion with BNfinder. The examples include a simple static network, dynamic network and a network requiriing setting
prior probabilities.

Simple static network

Figure 1: Very simple network consisting of 2 regulators and 4 observable regulatees.

The first example shows how to use BNfinder to learn a simple static Bayesian network. Let us imagine that we
are analysisng cells under two conditions P1 and P2 and that we are interested whether any of the four genes:
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G1, G2, G3, G4 are responding to these conditions. We assume that the true network is depicted in Fig 1, i.e.

• G1 is not dependent on P1 or P2,

• G2 is more likely to be expressed under condition P1,

• G3 is less likely to be expressed under condition P2,

• G4 is more likely to be expressed under any of the conditions P1 or P2.

We have collected 100 datapoints from this network, each consisting of both the state of conditions and the discrete
state of expression of the genes. You can download the input file here data/input1.txt.

If you open the file in a text editor, please note that the first line contains the information on the assumed structure:

#regulators P1 P2

This represents the fact, that we assume that genes (G1..G4) can depend on conditions (P1, P2) and not the other way
around.

You can try to run BNfinder on this file:

bnf -e input1.txt -n output1.sif -v

and you will see, that the network topology is reconstructed properly. Also the orientation of the regulatory interactions
is inferred properly as you can see in the output file data/output1.sif.

You can also try to see whether the optimal network is representative for a larger set of possible suboptimal networks:

bnf -e input1.txt -n output1w.sif -v -i 5 -txt output1.txt

This time, in the output file (data/output1w.sif), the edge labels represent the relative weights of different edges. In the
file data/output1.txt, we can find the originally computed weights for all considered suboptimal sets of parents for all
genes.

We can also try to analyze the data for this network without discretization: data/input2.txt. In this case we need another
directive to indicate that some of the dataseries are continuous:

#continuous G1 G2 G3 G4

Again if we run BNfinder on this data,

bnf -e input2.txt -n output2.sif -v

we can verify, that the output file contains correct information data/output2.sif.

Simple dynamic network

BNfinder can be used also to infer dynamic Bayesian networks from time series data. In this case it is not necessary
to specify the regulators sets, because DBNs, unlike static networks do not need to be acyclic.

In the first dataset: data/input3.txt, we have 1 serie of 20 consecutive measurements of gene expression from gene
network depicted in Fig. 2.

If we run BNfinder on this data:

bnf -e input3.txt -n output3.sif -v
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Figure 2: Very simple dynamic network consisting of 5 observables

We can see that the program was unable to correctly reconstruct all the edges. Again, if we look at the statistics of
edge occurences in suboptimal networks,

bnf -e input3.txt -n output3.sif -v -i 10 -txt output3.txt

we can see that the correct edges are the most commonly occuring ones, but they score lower than empty parent sets.

In this case we can show how perturbational data can be integrated into this framework. We have collected gene expres-
sion from 5 time-series containing one single gene knockout for each of the genes: data/input4.txt. The perturbations
are noted by including the following lines in the preamble of the data file:

#perturbed EXP1 G1
#perturbed EXP2 G2
#perturbed EXP3 G3
#perturbed EXP4 G4
#perturbed EXP5 G0

If we run BNfinder on the perurbed data, we can see that all the edges are reconstructed with high confidence.

bnf -e input4.txt -n output4.sif -v -i 10 -txt output4.txt

Setting priors

In some cases it might be useful to include some prior information on the network structure into the process of
inference. We will illustrate this on an example of a simple network similar to the one described in section 2.1. This
time it is an even simpler network , with 2 conditions and 2 genes as depicted in Fig. 3. Even though topology of the
network is very simple, the problem lies in the fact that the dependence of G2 on P2 is weaker than the dependence
of G1 on P1. This is why if we run our software on the unmodified dataset data/input5.txt,

bnf -e input5.txt -n output5.sif -v -i 10 -t output5.txt

we can see that the program is unable to recover the P2 → G2 edge. However, if we expect that G2 is responding
weakly to its regulators, we can increase the prior probability of G2 being regulated by any of the factors P1, P2 via
decreasing its weight:
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Figure 3: Exemplary network containing dependencies of different strength

#prioredge G2 0.33 P2 P1

we can see the edge appearing in the result as expected (see data/input6a.txt):

bnf -e input6a.txt -n output6a.sif -v -i 10 -t output6a.txt

Similarly, if we expect, that in general gene response to condition P2 is weaker, we may modify the prior probability
of the condition P2 to be a regulator:

#priorvert 0.33 P2

The result of running BNFinder with this input (data/input6b.txt) is very similar to the previous one:

bnf -e input6b.txt -n output6b.sif -v -i 10 -t output6b.txt

2.2 Examples of published datasets

In this section, we present two more realistic examples of published datasets used for inference of Bayesian networks.
The first one consists of measurements of states of protein signalling network under different perturbations [7]. It’s
been used to infer causal relationships in the form of static Bayesian network.

The second dataset comes from documentation of the Banjo package [8] which can be downloaded from
(http://www.cs.duke.edu/∼amink/software/banjo). It consists of 2000 obesrvations describing a relatively large dy-
namic network consisting of 20 nodes. It may be considered a benchmark of the efficiency of our algorithm.

PLEASE NOTE that these datasets are too large to be run through BNFinder webserver. If you would like to
run them, please download the software.

Static Protein signalling network

In this section we present how BNfinder can be applied to a protein signalling network analyzed by Sachs et al [7].
We took the data from the article, and transformed it into the format suitable for BNfinder. We also needed to specify
several properties of the data in the preamble of the file data/sachs.inp

Firstly, we needed to specify that the data are continuous measurements:
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Figure 4: Reconstruction of the protein signalling network. Dark blue arrows represent dependencies found in litera-
ture. Light blue arrows represent dependencies found by BNfinder but not expected by Sachs et al. [7]

#continuous praf pmek plcg PIP2 PIP3 p44/42 pakts473 PKA PKC P38 pjnk

Then, we needed to specify the expected layer structure of the signalling pathway we are studying:

#regulators plcg
#regulators PIP3
#regulators PIP2
#regulators PKC
#regulators PKA
#regulators praf
#regulators pjnk pmek P38
#regulators p44/42
#regulators pakts473

Then we needed to specify which of the proteins are affected by different perturbations.

#perturbed cd3cd28psitect_0 PIP2
#perturbed cd3cd28psitect_1 PIP2
#perturbed cd3cd28psitect_2 PIP2
...
#perturbed cd3cd28g0076_0 PKC
#perturbed cd3cd28g0076_1 PKC
#perturbed cd3cd28g0076_2 PKC
...

When we finally run the BNfinder:

bnf -e sachs.inp -n sach.sif -v

We obtain the network presented in Fig. 4. As we can see, the topology is quite consistent with the literature data. Out
of 17 expected edges, BNfinder recovers 11 correctly.
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Dynamic Bayesian network

This is a dataset of substantial size which is used [9] to assess the performance of our inference algorithm. The input
dataset (data/input7.txt) consists of 2000 measurments of 20 variables nd it takes approximately 3 hours to compute it
on a modern PC (2.4Ghz Intel Core 2 duo).

We can run BNfinder with the following command (notet that we are using the -l option to limit the number of parents
to 5):

bnf -e input7.txt -n output7.sif -v -l 5 -txt output7.txt

In Fig. 5 we can see part of the network reconstructed by BNfinder. All the edges reported by Banjo are also present in
the optimal network (dark blue). The optimal network contains a number of additional edges, not reported by Banjo.

Figure 5: The optimal network reconstructed by BNfinder from the dynamic benchmark dataset. The edges reported
also by Banjo are shown in dark blue.

If you want to see how much faster the MDL algorithm is, you can also run BNfinder with the following command:

bnf -s MDL -e input7.txt -n output7mdl.sif -v -l 5 -txt output7mdl.txt

3 Supplementary methods

In the present section we give a brief exposition of the algorithm implemented in BNfinder and its computational cost
for two generally used scoring criteria: Minimal Description Length and Bayesian-Dirichlet equivalence. For a fuller
treatment, including detailed proofs, we refer the reader to [2].

12 3 Supplementary methods
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3.1 Polynomial-time exact algorithm

A Bayesian network (BN) N is a representation of a joint distribution of a set of discrete random variables X =
{X1, . . . , Xn}. The representation consists of two components:

• a directed acyclic graph G = (X,E) encoding conditional (in-)dependencies

• a family θ of conditional distributions P (Xi|Pai), where

Pai = {Y ∈ X|(Y, Xi) ∈ E}

The joint distribution of X is given by

P (X) =
n∏

i=1

P (Xi|Pai) (1)

The problem of learning a BN is understood as follows: given a multiset of X-instances D = {x1, . . . ,xN} find
a network graph G that best matches D. The notion of a good match is formalized by means of a scoring function
S(G : D) having positive values and minimized for the best matching network. Thus the point is to find a directed
acyclic graph G with the set of vertices X minimizing S(G : D).

The BNfinder program is devoted to the case when there is no need to examine the acyclicity of the graph, for example:

• When edges must be directed according to a given partial order, in particular when the sets of potential regulators
and regulatees are disjoint.

• When dealing with dynamic Bayesian networks. A dynamic BN describes stochastic evolution of a set of random
variables over discretized time. Therefore conditional distributions refer to random variables in neighboring time
points. The acyclicity constraint is relaxed, because the ”unrolled” graph (with a copy of each variable in each
time point) is always acyclic (see [4] for more details). The following considerations apply to dynamic BNs as
well.

In the sequel we consider some assumptions on the form of a scoring function. The first one states that S(G : D)
decomposes into a sum over the set of random variables of local scores, depending on the values of a variable and its
parents in the graph only.

Assumption 1 (additivity) S(G : D) =
∑n

i=1 s(Xi,Pai : D|{Xi}∪Pai
), where D|Y denotes the restriction of D to

the values of the members of Y ⊆ X.

When there is no need to examine the acyclicity of the graph, this assumption allows to compute the parents set of
each variable independently. Thus the point is to find Pai minimizing s(Xi,Pai : D|{Xi}∪Pai

) for each i.

Let us fix a dataset D and a random variable X . We denote by X′ the set of potential parents of X (possibly smaller
than X due to given constraints on the structure of the network). To simplify the notation we continue to write s(Pa)
for s(X,Pa : D|{X}∪Pa).

The following assumption expresses the fact that scoring functions decompose into 2 components: g penalizing the
complexity of a network and d evaluating the possibility of explaining data by a network.

Assumption 2 (splitting) s(Pa) = g(Pa) + d(Pa) for some functions g, d : P(X) → R+ satisfying Pa ⊆ Pa′ =⇒
g(Pa) ≤ g(Pa′).

This assumption is used in the following algorithm to avoid considering networks with inadequately large component
g.

Algorithm 1
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1. Pa := ∅

2. for each P ⊆ X′ chosen according to g(P)

(a) if s(P) < s(Pa) then Pa := P

(b) if g(P) ≥ s(Pa) then return Pa; stop

In the above algorithm choosing according to g(P) means choosing increasingly with respect to the value of the
component g of the local score.

Theorem 1 Suppose that the scoring function satisfies Assumptions 1-2. Then Algorithm 1 applied to each random
variable finds an optimal network.

A disadvantage of the above algorithm is that finding a proper subset P ⊆ X′ involves computing g(P′) for all
⊆-successors P′ of previously chosen subsets. It may be avoided when a further assumption is imposed.

Assumption 3 (uniformity) |Pa| = |Pa′| =⇒ g(Pa) = g(Pa′).

The above assumption suggests the notation ĝ(|Pa|) = g(Pa). The following algorithm uses the uniformity of g to
reduce the number of computations of the component g.

Algorithm 2

1. Pa := ∅

2. for p = 1 to n

(a) if ĝ(p) ≥ s(Pa) then return Pa; stop

(b) P = argmin{Y⊆X′:|Y|=p}s(Y)

(c) if s(P) < s(Pa) then Pa := P

Theorem 2 Suppose that the scoring function satisfies Assumptions 1-3. Then Algorithm 2 applied to each random
variable finds an optimal network.

3.2 Minimal Description Length

The Minimal Description Length (MDL) scoring criterion originates from information theory [6]. A network N is
viewed here as a model of compression of a datasetD. The optimal model minimizes the total length of the description,
i.e. the sum of the description length of the model and of the compressed data.

Let us fix a dataset D = {x1, . . . ,xN} and a random variable X . Recall the decomposition s(Pa) = g(Pa) + d(Pa)
of the local score for X . In the MDL score g(Pa) stands for the length of the description of the local part of the network
(i.e. the edges ingoing to X and the conditional distribution P (X|Pa)) and d(Pa) is the length of the compressed
version of X-values in D.

Let kY denote the cardinality of the set VY of possible values of the random variable Y ∈ X. Thus we have

g(Pa) = |Pa| log n +
log N

2
(kX − 1)

∏
Y ∈Pa

kY
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where log N
2 is the number of bits we use for each numeric parameter of the conditional distribution. This formula

satisfies Assumption 2 but fails to satisfy Assumption 3. Therefore Algorithm 1 can be used to learn an optimal
network, but Algorithm 2 cannot.

However, for many applications we may assume that all the random variables attain values from the same set V of
cardinality k. In this case we obtain the formula

g(Pa) = |Pa| log n +
log N

2
(k − 1)k|Pa|

which satisfies Assumption 3. For simplicity, we continue to work under this assumption. The general case may be
handled in much the same way.

Compression with respect to the network model is understood as follows: when encoding the X-values, the values of
Pa-instances are assumed to be known. Thus the optimal encoding length is given by

d(Pa) = N ·H(X|Pa)

where H(X|Pa) = −
∑

v∈V
∑

v∈VPa P (v,v) log P (v|v) is the conditional entropy of X given Pa (the distributions
are estimated from D).

Since all the assumptions from the previous section are satisfied, Algorithm 2 may be applied to learn the optimal
network. Let us turn to the analysis of its complexity.

Theorem 3 The worst-case time complexity of Algorithm 2 for the MDL score is O(nlogk NN logk N).

3.3 Bayesian-Dirichlet equivalence

The Bayesian-Dirichlet equivalence (BDe) scoring criterion originates from Bayesian statistics [1]. Given a dataset D
the optimal network structure G maximizes the posterior conditional probability P (G|D). We have

P (G|D) ∝ P (G)P (D|G) = P (G)
∫

P (D|G, θ)P (θ|G)dθ

where P (G) and P (θ|G) are prior probability distributions on graph structures and conditional distributions’ parame-
ters, respectively, and P (D|G, θ) is evaluated due to (1).

Heckerman et al. [5], following Cooper and Herskovits [1], identified a set of independence assumptions making
possible decomposition of the integral in the above formula into a product over X. Under this condition, together with
a similar one regarding decomposition of P (G), the scoring criterion

S(G : D) = − log P (G)− log P (D|G)

obtained by taking − log of the above term satisfies Assumption 1. Moreover, the decomposition s(Pa) = g(Pa) +
d(Pa) of the local scores appears as well, with the components g and d derived from − log P (G) and − log P (D|G),
respectively.

The distribution P ((X,E)) ∝ α|E| with a penalty parameter 0 < α < 1 in general is used as a prior over the network
structures. This choice results in the function

g(|Pa|) = |Pa| log α−1

satisfying Assumptions 2 and 3.

However, it should be noticed that there are also used priors which satisfy neither Assumption 2 nor 3, e.g. P (G) ∝
α∆(G,G0), where ∆(G,G0) is the cardinality of the symmetric difference between the sets of edges in G and in the prior
network G0.

3.3 Bayesian-Dirichlet equivalence 15



The Dirichlet distribution is generally used as a prior over the conditional distributions’ parameters. It yields

d(Pa) = log

 ∏
v∈V|Pa|

Γ(
∑

v∈V(Hv,v + Nv,v))
Γ(
∑

v∈V Hv,v)

∏
v∈V

Γ(Hv,v)
Γ(Hv,v + Nv,v)


where Γ is the Gamma function, Nv,v denotes the number of samples in D with X = v and Pa = v, and Hv,v is the
corresponding hyperparameter of the Dirichlet distribution.

Setting all the hyperparameters to 1 yields

d(Pa) = log

 ∏
v∈V|Pa|

(k − 1 +
∑

v∈V Nv,v)!
(k − 1)!

∏
v∈V

1
Nv,v!

 =

=
∑

v∈V|Pa|

(
log(k − 1 +

∑
v∈V

Nv,v)!− log(k − 1)!−
∑
v∈V

log Nv,v!

)

where k = |V|. For simplicity, we continue to work under this assumption (following Cooper and Herskovits [1]).
The general case may be handled in a similar way.

The following result allows to refine the decomposition of the local score into the sum of the components g and d.

Proposition 1 Define dmin =
∑

v∈V (log(k − 1 + Nv)!− log(k − 1)!− log Nv!), where Nv denotes the number of
samples in D with X = v. Then d(Pa) ≥ dmin for each Pa ∈ X.

By the above proposition, the decomposition of the local score given by s(Pa) = g′(Pa) + d′(Pa) with the compo-
nents g′(Pa) = g(Pa) + dmin and d′(Pa) = d(Pa) − dmin satisfies all the assumptions required by Algorithm 2.
Let us turn to the analysis of its complexity.

Theorem 4 The worst-case time complexity of Algorithm 2 for the BDe score with the decomposition of the local
score given by s(Pa) = g′(Pa) + d′(Pa) is O(nN logα−1 kN2 logα−1 k).

3.4 Continuous variables

Both MDL and BDe scores are designed for discrete variables. In order to avoid arbitrary discretization of continuous
data we adapted these scores to deal with continuous variables directly.

The distribution of each continuous variable is assumed to be a mixture of two normal distributions. Mixture param-
eters are estimated from data clustered with the k-means algorithm (k = 2, cutting the set of variable values in the
median yields the initial clusters). Then the parameters are used in transforming continuous values into probability
distributions on the mixture components. These components are considered to be the two possible values (low and
high) of a related hidden discrete variable.

In the learning procedure BNfinder analyses regulatory relationships between these hidden variables (and possibly
variables that were discrete originally). Thus the scoring functions must be able to handle distributions on variable
values instead of their determined values. In such cases BNfinder uses expected values of the original scores.
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[3] Norbert Dojer, Anna Gambin, Bartek Wilczyński, and Jerzy Tiuryn. Applying dynamic Bayesian networks to
perturbed gene expression data. BMC Bioinformatics, 7:249, 2006.

[4] N Friedman, K Murphy, and S Russell. Learning the structure of dynamic probabilistic networks. In G F Cooper
and S Moral, editors, Proceedings of the Fourteenth Conference on Uncertainty in Artificial Inteligence, pages
139–147, 1998.

[5] David Heckerman, Dan Geiger, and David Maxwell Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning, 20(3):197–243, Sep. 1995.

[6] W. Lam and F. Bacchus. Learning Bayesian belief networks: An approach based on the MDL principle. Compu-
tational Intelligence, 10(3):269–293, 1994.

[7] K. Sachs, O. Perez, D. Pe’er, D.A. Lauffenburger, and G.P. Nolan. Causal protein-signaling networks derived
from multiparameter single-cell data. Science, 308:523–529, Apr 2005.

[8] V. Anne Smith, Jing Yu, Tom V Smulders, Alexander J Hartemink, and Erich D Jarvis. Computational inference
of neural information flow networks. PLoS Comput Biol, 2(11):e161, Nov 2006.

[9] Bartek Wilczynski and Norbert Dojer. BNfinder: Exact and efficient method for learning Bayesian networks.
submitted.

References 17


