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Abstract

We present a model of contextual alignment of biological sequences. It is
an extension of the classical alignment, in which we assume that the cost of
a substitution depends on the surrounding symbols. In this model the cost
of transforming one sequence into another depends on the order of editing
operations. We present efficient algorithms for calculating this cost, as well
as reconstructing (the representation of) all the orders of operations which
yield this optimal cost. A precise characterization of the sets of linear orders
which can emerge this way is given.



Chapter 1

Introduction

A large portion of modern computational biology is concerned with mea-
suring the degree of similarity of biological sequences, the most prominent
examples of which are DNA and proteins.

Generally, to get such a model of similarity, one assumes a set of operations,
which can change sequences, and a score function, assigning a score to each
operation performed on a sequence. Then, each set of operations transform-
ing a biological sequence V into another such sequence W is assigned a score
— typically the sum of the scores of individual operations. The operations
correspond to evolutionary changes, higher score reflects that the event is
more likely to appear. Several values are then of interest, the crucial ones
being the maximal possible score of a transformation of V' into W and the
maximal score of a transformation of a contiguous fragment of V into a
fragment of W (maximized over such fragments, t00).

The model dominating in the field (the so called alignment model)(cf. [DEKM98,
Gus97]), used for DNA and proteins, assumes the operation of substitution

of one letter for another, as well as an insertion or a deletion of a sequence

of letters. The score of a substitution depends only on the two residues ex-
changed. It is provided by the so-called substitution tables [DSO78, HH92].
The score for insertions and deletions depends solely on the length of the
inserted/deleted subsequence (it is quite often an affine function).

Of course, the above score model is a great oversimplification from the bi-
ological point of view. However, it is the most commonly used, because it
permits very efficient algorithms to compute the key values, called the max-
imal global and local alignment scores, respectively. Other models, which



are biologically more realistic, are computationally very hard (or even prov-
ably intractable). For example, a very important property of proteins is
their fold (i.e., the 3-D shape they assume in the cell), which can decide
homology between proteins of quite different sequences. However, despite
very intense efforts, predicting the shape of a protein, based on its sequence,
is recognized as an extremely difficult problem.

Results. In this paper we offer a model, which extends the classical align-
ment model, with the intention to bring it a step closer to the biological
reality without sacrificing its algorithmic properties. The set of operations
is the same as that of the alignment model but the score function of a sub-
stitution changes. In our model the score of a substitution depends on the
surrounding letters in the sequence, too. Le., the score of substituting b by
d in abc can differ from the score of substituting b by d in a’bc’. The score
for insertions and deletions is inherited from the classical model. We call
our model the contextual alignment model.

The aim of this paper is to present efficient algorithms for calculating the
maximal global and local contextual alignment scores. Indeed, their com-
plexity is (up to a constant factor) the same as that of the algorithms of
the classical non-contextual alignment model. Assuming that the sequences
V and W are of length m and n, respectively and that the insertion and
deletion scores are affine, both the global and the local contextual alignment
algorithms work in time O(|X|mn), where |X| is the size of the alphabet (4 in
the case of DNA, 20 in the case of proteins). In the non-contextual case the
complexity is O(mn), independent of the size of the alphabet. The constant
in our model is, as one can see above, higher than in the non-contextual
case, but is still reasonable.

Another topic of our paper is the order in which operations are performed.
As it is easy to see, in the contextual alignment model, the score of a set
of operations depends on the order. Indeed, an operation may change the
contexts of future operations.

Example 1. Here we see that the relative order of two substitutions applied
to the same sequence affects the score, if a contextual scoring function is



used.
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Often operations performed at distant fragments of the sequence are inde-
pendent, in the sense that neither of them changes the context of the other.
Independent operations can be performed in any order. Therefore, there are
typically many orders, which give the maximal score. Thus, our algorithms
find not only an optimal set of operations, but also reconstruct a precise
characterization of the set of all possible orders (we call them admissible
orders), in which the operations may be performed to yield the maximal
score.

Apart from that we present in this paper a series of characterizations of these
sets of admissible orders, which can emerge as the result of our algorithms.
Analysis of the admissible orders has led us to the construction of efficient
algorithms for contextual alignment and justified their correctness.

Summarizing, the main contributions of the paper are:

e Contextual alignment model a new approach to measuring similarity
of biological sequences.

e Efficient algorithms for constructing contextual alignments of maxi-
mal score, their scores, and (the representations of) the sets of all
admissible linear orders of operations, which give that maximal score.

e Precise characterization of all the sets of admissible linear orders which
correspond to complete sets of operations of a maximal score.

The paper is organized as follows. Section 2 introduces the concept of a con-
textual alignment. The impact of the order of edit operations on the total
score is illustrated here. We also introduce in this Section the concept of a



generating poset, which serves as a method to succinctly represent a family
of linear orders, each of them yielding an optimal score. Section 2 contains a
characterization of generating posets which can come up from the analysis of
a contextual alignment. A method of constructing generating posets from a
given alignment follows from the results of this Section. In Section 3 we start
with a description of an algorithm which finds a representation of all linear
orders of edit operations, each of the orders yielding an optimal score for an
alignment without gaps (hence the edit operations in this case are substitu-
tions). Then we present an algorithm for a global contextual alignment with
gaps and an affine gap penalty function. We justify the correctness of this al-
gorithm, as well as we remark on the possibility of modifying this algorithm
for finding local optimal contextual alignments. We conclude this Section
with an example of a ‘real life’ contextual alignment together with a gener-
ating poset for this alignment. In Section 4 we discuss some issues related
with construction of context-dependent substitution matrices. Section 6 is
devoted to discussion of the validation of our model on biological data. We
discuss here statistical significance of contextual vs. non-contextual align-
ment; impact of the number of context groups on the discriminating power
of the contextual alignment; a comparison of discriminating power of con-
textual and non-contextual alignment; and finally the issue of constructing
phylogenetic trees with the help of contextual alignment. Appendix con-
tains tables for determining constraints which are generated by an insertion
block.

Biological motivation and related work. There are numerous known
examples in biology, showing that indeed a context may affect the likelihood
of changes in biological sequences. One of them is the elimination of adjacent
cytosine-guanine pairs in DNA, caused by biochemical mechanisms of repli-
cation. Another one is observed in proteins: substitution of a hydrophobic
amino acid by a hydrophilic one in hydrophobic context with much higher
probability changes the fold of the protein than an identical substitution in
a hydrophilic context. If a protein changes its fold, it may lose its biological
activity and thus the underlying mutation is more likely eliminated in the
evolution.

We should mention that the contextual alignment we consider is an algo-
rithmic counterpart of work already undertaken in probability theory. Re-
cently several papers have been published [SvH94, vHS98, JKP00], which
consider a probabilistic model, in which a biological sequence undergoes ran-
dom changes due to substitutions, whose probability is context-dependent.
This leads to a Markov chain model of quite a complicated structure. The



questions considered in the papers are existence and characterization of the
steady-state distribution, estimation of the rate of evolution, as well as es-
timating the size of the context, which significantly affects the substitution
probabilities. E.g., [TG89] estimate the size of the significant context for
the DNA evolution in the bacteriophage A to be 1 or 2 bases (but not 0!).
This gives us another argument for considering contextual alignments, as
well as for restricting our attention to contexts of size 1.

The paper [WL84] considers contexts for comparing a pair of biological se-
quences. This is achieved by trying to align without gaps, in various ways,
short blocks (the term used there is aligned fragments) of characters from
each of the two sequences. Scoring of the aligned blocks is given by an
external scoring function. Since each pair of blocks receives its own score,
the concept of a context is thus present in that approach. This is differ-
ent, understanding of the context than in the present paper — our context
is understood as flanking characters which may influence the likelihood of
symbol substitution, while in [WL84] the context is understood as having
a direct effect on scoring pairs of aligned blocks. It follows that the two
approaches, despite of using similar names, have nothing in common.



Chapter 2

Contextual Alignment

Let V and W be strings over an alphabet . A gap, denoted —, is a symbol
assumed not to belong to Y. Let us fix an alignment (V#,W#) of these
two sequences. Let us recall that an alignment (V#, W#) is a pair of strings
over ¥ U {—} satistying the following properties:

1. Erasing gaps in V# and in W# yields V and W, respectively.
2. |V#| = |W#| = n, for some n.

3. If V;# is a gap, then 1 < ¢ < n and none of the I/Vil, Wl#7 I/Vﬁl is a
gap.

4. If WZ# is a gap, then 1 < ¢ < n and none of the Vﬁfl,Vg#,Vil is a
gap.

It follows from the definition of an alignment that the outermost blocks are
always substitutions and that insertions and deletions have to be separated
by at least one substitution. Adopting the latter requirement reduces the
complexity of the problems considered in this paper. Also, the substitu-
tion tables together with gap penalties, used by the biologists are usually
constructed in such a way that an insertion followed by a deletion (or vice
versa) is more costly than a simple substitution.

An alignment induces three kinds of blocks, each block has its unique address
and unique length:

e A substitution has an address i, if Vi#, WZ# € X, i.e. if they are not
gaps. Substitutions are one element blocks.



e An insertion has an address 1, if Vil € X, Vi# = —. The length of

the insertion block is the least j > 0 such that Vj] € .

e A deletion has an address i, if W, € £, W = —. The length of the
deletion block is the least j > 0 such that Wﬁ] € .

Following the above classification of blocks we have three kinds of operations,
each associated with one block.

o (Substitutions) S;jqp, Where 1 < i < n is an address of a substitution
block and a,b € 3. The characters a,b are called contexts. There are
also two outermost substitutions: S; and S,,.

e (Insertions) I;, where i is an address of an insertion block.

e (Deletions) D;, where i is an address of a deletion block.

The insertions, deletions and outermost substitutions are taken without any
context.

The cost c(o) of each operation o can be read off from the address of the
corresponding block and from the alignment (V#, W#). It also depends on
the gap penalty function g and on the contextual substitution tables Mg (-, ),
where a,b ranges over X. The definition follows.

c(S1) = ¢(Sy) = 0.

(Si.ap) = Mup(V;HWH), for 1 <i <n.
c(I;) = g(j), where j is the length of the insertion block with address 1.
c(D;) = g(j), where j is the length of the deletion block with address i.

A complete set of operations, cso, is any set of operations which correspond
to all blocks, one operation for each block. Hence each cso has the same
cardinality.

Since the cost of a substitution may depend on the context, it follows that
when transforming V# into W# the order in which the operations are per-
formed may influence the total cost of the transformation. We first de-
fine what it means to perform an operation on a string X = z1...x2, €

(Eu{-p.



e For 1 < i < n, asubstitution S; 4 is admissible for X, if z;_1 = a and
z;+1 = b. The substitutions S; and S, are always admissible. The
result of performing the substitution (either S ,;, or Sy, or Sy,) on X

is X’ = X1... -Ii—lWi#xi—f-l oo Ty

e [; is always admissible for X and the resulting string is
X/ =T1... iEZ'_1Wi# ‘e Wiﬁjflivi"‘j e . Ip.

e D, is always admissible for X and the resulting string is
X’ =T1.--Tj—1 = oo Ljtgj---Tp.

J

Let O = {o1,...,0r} be a cso. A linear order 01 < 02 < ... < o is said
to be admissible, if starting from V and performing the operations from
O in the ascending order yields W without ever performing an inadmissible
substitution. More formally, we define a sequence of strings Xy, ..., Xy such
that Xg =V, X = W and for every 1 < i < k, the operation o; is admissible
for X; 1 and yields X;. A cso is called admissible if it has an admissible
linear order. In general, an admissible cso may have many admissible linear
orders. The aim of this section is to characterize the structure of admissible
linear orders on a given admissible cso.

Before this, we give the definition of an optimal contextual alignment. Given
two strings V, W, we maximize over all alignments (V#, W#) and over all
admissible c¢so’s O the cost

0€0

Hence the optimal solution consists not only of an alignment but also of a
family of admissible linear orders for this alignment. We will see that in
many situations this family of orders can be conveniently represented by
one principal partial order P, all admissible linear orders being the linear
extensions of P.

2.1 Order Constraints for an Insertion Block

We start with an example which illustrates the issues we have to deal with.



Example 2. Consider the following alignment (numbers represent positions
used for addresses).

1 2 3 4 5 6
e a — — c¢ t
fa ¢ d b u

Numbers in the above alignment represent positions. The upper string ea —
—ct is a sample V# and the lower string is a sample W#. The operations
transform the upper string into the lower string.

The following set is a cso
O1 = {51, 52, I3, S5,0,u, 56 }-

There are exactly two admissible linear orders for O1: 6 <5 <2<3<1
and 6 < 5 <2 <1 < 3. These chains can represented as all linear extensions
of the following principal poset.

(G200 \V)

The two admissible linear orders are all (and only) linear extensions of the
the above poset. In general the number of linear orders can be bigger and
the structure of the principal poset can be more complicated.

Consider now the following cso:
Oz = {51,520, I3, S5,d,u, S6 }-

O, imposes the following constraints: 3 must be performed before 5, 5 must
be performed before 2 and 2 must be performed before 3. Hence there is no
admissible linear order and O is inadmissible.

Finally let us consider the cso:
O3 = {51, 52,¢.c; I3, 5,0,u, S6 } -

The constraints generated by Og are: 6 < 5 < 3 and 2 < 1, plus the proviso
that if 5 was performed before 2, then 3 has to be performed also before
2 (i.e. 2 cannot be between 5 and 3). It is easy to check that in this case
there is no single principal poset generating all (and only) admissible linear
orders. However, two generating posets can do the job.
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Again, the representation works as follows. Every extension to a linear order
of any of the above posets is an admissible linear order for O3 and every ad-
missible linear order is obtained in such a way. In the above representation
of the poset it follows that 5 has to be performed after 2 and 3 has to be
performed after 3. In particular 3 has to be performed after 2. Even though
3 is depicted in the diagram higher than 1, there is no time relationship be-
tween 1 and 3: the diagram does not determine which of the two operations
will be performed first. The same remark applies to operations 1 and 5 or 1
and 6.

This example is little degenerated since the second generating poset is al-
ready a chain, so there is nothing to extend. In general, though, the gen-
erating posets can be more complicated and the number of such posets can
be larger than 2.

Now let us consider a general situation of an insertion surrounded by two
substitutions.

j k
T X
a ¢ co - - ooy b

Figure 2.1: A typical triple of blocks: substitution, insertion, substitution.

The second and third strings in the above Figure are assumed to be parts
of V# and W#, respectively. The numbers i, j, k stand for the addresses of
the blocks. Clearly we have j =i+ 1 and k£ = i +m + 1 but for the ease
of presentation we choose to work with i, j, k as if they were independent.
It is more convenient to examine the mutual constraints which come from
choosing the right context for the left substitution and the left context for
the right substitution.

The substitution ¢ has three possible right contexts: b,0" and ¢;. Likewise,
the substitution £ has three possible left contexts: a,a’ and ¢,,. The case
when m = 0, i.e. when there is no insertion between ¢ and k will also be
covered by our analysis.

10



Assume for now that b, b, c; are pairwise different and so are a, d’, c,,.

Selecting b as the right context for ¢ imposes the constraint that ¢ must be
performed before j and k, without further imposing the order between j and
k. This constraint is conveniently represented by the poset

j k
N

All linear extensions of the above poset are admissible for the choice of b as
the right context for .

In a similar way, selecting a as the left context for k£ generates the constraint
\/j
k

Now, selecting b and a as the right and left contexts for ¢ and k, respectively,
generates a contradiction. Hence any cso which contains the above contexts
for 7 and k£ will be inadmissible.

1

On the other hand, if ¢,, is selected as the left context for k, then the
resulting constraint is

k

lj

The above constraint generates three linear orders on {i, j,k}. Selecting b
and ¢, as the right and left contexts for ¢ and k, respectively, yields just
one chain:

k

J

1

Let us briefly discuss ways of representing families of linear orders on a three
element set {7,7,k}. An explicit way is just to represent a given family by
listing all of its elements. Another, more concise way is to represent a family
by a finite poset whose all linear extensions form exactly the given family.
Such a poset will be called a principal poset. Not every family of linear
orders can be represented this way. It is easy to show that for a family of
linear orders which has a principal poset, the intersection of all linear orders
in that family yields this poset. We will use the following notation. Cy«y<.
stands for the constraint z < y < z. Cp<y stands for the constraint =z < y.
It corresponds to the poset where the third element is not comparable to the

11



other two. V&* stands for the constraint z < y,z < z. A}, stands for the
dual constraint y < x,z < z. | stands for the contradictory constraint, i.e.
it generates no linear order. It does not correspond to any poset. Finally
T stands for the constraint which generates all linear orders (on the three
element set). It corresponds to the discrete order on the three element set.
The constraints are naturally ordered by comparing the sets of linear orders
they generate. In fact, under this order the constraints, viewed as sets of
linear orders on the three element set, form a Boolean algebra. If & stands
for the least upper bound and ® stands for the greatest lower bound, then

we have the following sample identities
j7k
Cicj @ Cic, = V37",
n
VI" @ Creicj = Cigj.

In Table 2.1 we list the six basic constraints: three constraints for choosing
a letter for the right context for ¢« and three for the left context for k.

b | ¥ | a |a| d | cm
VIP | Crcics | Ciai | Vi | Cicrey | Cian

Table 2.1: Constraints. Part {b,b,c¢1} is for right contexts for i. Part
{a,d, ¢y} is for left contexts for k. We assume here that b, ¥, ¢; are pairwise
different, and so are a,d’, c,,.

If we view constraints as propositions, then & corresponds to disjunction,
® corresponds to conjunction, and L and T correspond to the truth val-
ues ‘false’ and ‘true’, respectively. This observation is useful when we want
to generate from Table 2.1 the constraints which come from assuming si-
multaneous contexts: a right context for ¢ and a left context for k. This
corresponds to taking a conjunction of the constraints. For example, choos-
ing (b,a) as a pair of contexts yields the constraint \/g’k ® \/2’] = 1, while
choosing (b, a’) yields the constraint \/{’k®0i<k<j = Ci<k<j. The constraints
for all possible pairs of contexts are listed in Chart 1 in the Appendix.

So far, we have assumed that the symbols b, b, ¢ are pairwise different. Like-
wise for the symbols a,d’, ¢,,. If, for example, the symbols b and b’ happen
to be equal® in Figure 2.1, then the constraint associated with choosing b
(which is the same as V') as the right context for i is obtained from Table 2.1

'Here we implicitly assume that c; is different from b and b'.

12



by taking disjunction of the constraints which correspond to b and o’. Thus
the constraint becomes \/g’k ® Cl<i<j- This constraint cannot be replaced by
a constraint which describes a single poset. The above described situation
of collapsing symbols b, b’ corresponds to taking the partition {{b,'},{c1}}
of the set {b,0/,c1}. Clearly there is a one-to-one correspondence between
all possible equalities among the symbols b, ¥, c; and partitions of the set
{b,t/,c1}. There are 5 possible partitions and therefore there are 25 possible
tables, one for each pair of partitions on sets {b,¥,c1} and {a,d’,c;,}. Ta-
ble 2.1 is just the table which corresponds to the finest partitions of {b,¥, c; }
and {a,d, cp}.

We are interested in constraints which are generated for pairs of contexts,
rather than for single contexts. Combining the methods described in the
above two paragraphs yields 25 tables of constraints for pairs of contexts. For
example, a constraint for the pair of contexts (b, a), under the assumption
that b = b’ and a = o’ (and assuming that no other equality holds) is the
following (\/g’k ® Creicj) ® (\/Z’j ® Cici<j) = /\iﬂ.. In Table 2.2 we present
all possible constraints for the situation when b = ¢; and o’ = ¢,,. The
constraint \/‘Z’k &) \/;’k cannot, be replaced by a constraint which describes a
single poset.

(ba) | (ba) | (ta) | (.a)
Crejci | VIF@ VI | Craics | L

Table 2.2: Constraints for the situation b = ¢; and o’ = ¢,y,.

All the 25 tables, each containing all possible pairs of contexts, are listed in
the Appendix (Charts 1-25).

The case when substitutions ¢ and k£ are next to each other, i.e. when
m = 0, is covered by the above discussion. It suffices to remove from the
considerations the contexts ¢; and ¢, and remove j from the constraints,
i.e. we study then linear orders on the two element set {7, k}. The resulting
table is given below.

b ‘ b ‘ a ‘ a
Cick | Cr<i | Cre<i | Cic

Table 2.3: Constraints for the case m = 0.

13



Now we are going to characterize the alignments and pairs of contexts for
which there is no principal poset. First we introduce some auxiliary notions.
Given a pair of partitions: on {b,¥,¢1} and on {a,d’, ¢;, }. A pair of contexts
(z,y) with x € {b,0/,c1} and y € {a,d’, ¢, } is said to be collapsing if both
and y belong to a block of the partition which has more than one element.
For example, for the partition induced by the assumptions of Table 2.2 the
pair (b,a’) is collapsing, but the pair (b, a) is not.

Consider the triple: substitution, insertion, substitution, as in Figure 2.1.
We say that the insertion is non-principal if the following four conditions
hold.

1. {a,d,cn}| <2.
2. {b,V,c1}| < 2.
3.b#AV, ora#d.

4. b=c1, or a = ¢,.

An insertion which is not non-principal is called principal.

Proposition 1. Consider the triple: substitution, insertion, substitution,
as in Figure 2.1. Let (z,y) be a pair of contexts with x € {b,¥/,c1} and
y € {a,d, ¢}, T being the right context for i and y being the left context for
k. Let P be a poset which is the intersection of all linear orders on {i, j, k}
which are admissible for (x,y). Assume there is at least one such linear
order. Then every extension of P to a linear order is admissible (i.e. P
is the principal poset) iff either (z,y) is not collapsing, or the insertion is
principal.

If (z,y) is collapsing and the insertion is non-principal, then there are two
posets Py, Py on {i,j,k} such that every linear order extension of any of
these posets is admissible for (x,y) and conversely, every admissible linear
order is an extension of P1 or Pa.

Proof. We prove the first part of Proposition 1. The second part follows
immediately from inspection of constraint charts given in Appendix. First
we prove (=). Suppose that (z,y) is collapsing and the insertion is non-
principal. It follows from the definition of non-pricipality of an insertion

14



that we have to consider the following 9 cases.

b=c, a=d
b=cq, a=cny
b=c, ad =cm,
b=c, a=d =c¢cp
b="0, a=cnp
b =c, a=cpy
b/261, a:alzcm
b=V =¢, a=cpy
b=V =ci, ad =cp

Consider just the first case. The collapsing pair for this case is (b, a) and by
inspecting Chart 12 in the Appendix we see that k < j <7and i < k < j
are the only admissible linear orders. Now, their intersection is the poset
k < j with 7 being incomparable. Thus the linear order £ < i < j is an
inadmissible extension of this poset. The other cases are dealt with in a
similar way — they are left for the reader.

For the opposite implication we observe, by inspecting the charts in the
Appendix, that when the pair of contexts is not collapsing, or when the
insertion is non-principal, then the constraint is in the form of one poset.
By the construction of constraints it follows that all linear extensions of this
poset are admissible and every admissible linear order is obtained in this
way. Clearly this poset is the intersection of all its linear extensions. m

2.2 Order Constraints for a Deletion Block

Consider now a general situation of a deletion block flanked on both sides
by a substitution.

i j k
a ¢ ¢ - -+ - ¢ b
a/ _ _ _ bl

Figure 2.2: A typical triple of blocks: substitution, deletion, substitution.

Fortunately we do not have to redo all the considerations from the previous
section. There is an easy way of getting all the constraint tables for the

15



deletion block from those for the insertion block. Define a mapping & :
{a,d’,c1,b,0 ¢} — {a,ad',c1,b,V e} as follows.

{la) =a', £b) =V, Ela)=oc,
f(a’) = a, f(b/) =b, f(cm) = Cm-

A dual of a poset P is a poset [P]°P with the same carrier as P, but with
the order relation being reversed, i.e. = <jpjop y iff y <p x. For example,
[Crey<:]® = Cocycy and [VET]P = AT . Because T is represented by the
discrete poset, we have [T]? = T.

It follows that linear extensions of [P]? are the duals of all linear extensions
of P. This observation suggests the following extension of taking duals.

[L]P =1,
[PL ® B = [P1]? & [P]7,
[Pl ® PZ]Op - [Pl]Op & [Pg]gp.

The constraint tables for the deletion block are obtained as follows. Suppose
we want to construct a table Tp of constraints for the situation where the
letters in the alignment given by Figure 2.2 satisfy the equalities z; = 1,
T9 = ¥s,... Then we take the table T7 for insertion block in the alignment
given in Figure 2.1 with the equalities £(x1) = &(y1), £(x2) = &(y2), . .. Now,
the constraint in T for a pair of contexts (u,v) is the dual of the constraint
in 77 for the pair ({(u),&(v)). For example, the table of constraints for a
deletion block (as in Fig. 2.2) satisfying ¥/ = ¢; and a = ¢, is given below
(it is obtained directly from Table 2.2).

(b',ad) ‘ (', a) ‘ (b,a’) ‘(b,a)
Cicj<k ‘ A;,k@/\z,k ‘ Cici<k ‘ 1

Table 2.4: Constraints for the situation b = ¢; and a = ¢,y,.

Using the above transformation one carries over all the notions and results
from the previous section to the case of a deletion block. For example, the
concept of a non-principal deletion is defined in the same way, except that
condition 4 is replaced by

4V =cy,ord =cpy.

A result analogous to Proposition 1 holds for deletion blocks, after replacing
the word ‘insertion’ by ‘deletion’.

16



2.3 Putting it All Together: Construction of Gen-
erating Posets

A poset P is called a hairy zig-zag if there is an enumeration P = {py,...,p,}
and a decomposition of P into three disjoint subsets P = Q U Hy U Hs such
that P is the least poset satisfying

L. p1,pn € Q.
2. For every i < mn, p; € Q or p;+1 € Q.

3. For every i < n, if p; € Q and j > i is the least index such that p; € @,
then p; and p; are comparable.

4. For every p; € Hy, p; is maximal in P and it is comparable with p;_1
or with p;11.

5. For every p; € Ho, p; is minimal in P and it is comparable with p;
or with p;41.

P is called a zig-zag, if there is a decomposition P = Q U H; U Hy in the
above definition with Hy = Hs = (). Then conditions (1), (2), (4), (5)
hold vacuously and (3) reduces to the property that every two consecutive
elements in the above enumeration are comparable.

In the definition of a hairy zig-zag the set @) is a backbone in the form of a
zig-zag around which there are attached ‘hairs’: Hj oriented upwards, and
H, oriented downwards.

A typical hairy zig-zag is presented in the figure below. The enumeration
for the poset presented below can be read off from the figure by reading the
elements from left to right. Discs represent elements of the backbone ) and
circles represent the elements which are hairs: H; U Ho.
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Let (V#, W#) be an alignment and let O be a cso. Anindel X € O is said to
be ambiguous if it is non-principal and (b, ¢) is collapsing, where S; ., € O
and Si.q € O are substitutions surrounding X, from left and right side,
respectively. Otherwise X is called unambiguous. O is said unambiguous if
every indel in X is unambiguous.

Finally we define the construction of poset concatenation. Given two posets
P and Q) which have at most one element in common. Their concatenation,
P %@, is a poset whose carrier is the union of the two carriers PUQ and the
partial order is the transitive closure of the union of partial orders <p U <q.

Theorem 1. Given an alignment (V#, W#). Let O be an admissible com-
plete set of operations and let m > 0 be the number of ambiguous indels in
O. There exist 2™ posets on O: P, ..., Pom, each being a disjoint union of
hairy zig-zags, such that

1. For every i < 2™, all linear extensions of P; are admissible for O.

2. For every admissible linear order for O, there is an © < 2" such that
this order is an extension of P,.

In particular, if O is unambiguous, then it has a principal poset and this
poset is the intersection of all admissible linear orders on O. The principal
poset for O is a disjoint union of hairy zig-zags.

Proof. We identify the operations with their addresses. Hence the elements
of the posets we are going to construct are positive integers. Let n be the
address of last substitution in (V#, W#). We show the construction of the
posets by induction on the number of substitutions involved in the alignment
(V#,W#). Initially we assume we have one one-element poset {1}.

Assume we have constructed so far the posets Pi,..., P. over operations,
whose addresses form an initial segment of the set of all addresses for
(V#,W#). Consider the triple of the form Si.abs Xjs Ske,d, Where X; € O
is an indel, S; 4, Sk,ca € O are substitutions surrounding X; (let i < k,
i.e. the substitution i is to the left of the substitution k) and let k be the
smallest address such that Sy .4 has not been considered so far. It follows
that X; has not been considered so far, either.?2 Assume first that 1 < i and
k < n, i.e. neither ¢ nor k are the flanking substitutions of the alignment.
Compute a constraint for the pair (b, c) of contexts, according to the rules

*We allow the situation when there is no indel between S; 4 5 and Sk,c,a-
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described earlier. If X; is unambiguous, then the constraint is of the form of
a poset Q. Otherwise the constraint is of the form Q1 @ @2, for some posets
Q1, Q2 (see Proposition 1). In the former case we construct the new posets:

P xQ,..., P xQ.

In the latter case we construct the posets

Pl*le"'aPT*lepl*Q27"'7PT*Q2'

The above construction is slightly different for the case i = 1 or k = n (since
S1 and S, are always admissible). For i = 1 we take the constraint for the
right context ¢ (use for this Table A.1 in the Appendix). For k = n we take
the constraint for the left context b (use Table A.2 in the Appendix).?

By the time the construction terminates, we have constructed 2™ posets
P, ..., Pom, where m is the number of ambiguous indels in O. It also im-
mediately follows from the property of the constraints that 1. and 2. of
the Theorem hold. It remains to show that each P; is a disjoint union of
hairy zig-zags. As the enumeration in the definition of a hairy zig-zag we
take the order on the addresses of the operations as they appear in the
alignment. Addresses of the substitutions form the backbone, addresses of
the insertions (resp. deletions) form the upward (resp. downward) hairs
of the zig-zag. Then it remains to observe that the above obtained posets:
Q,Q1, Q2 are of a very special form (and there are very few different such
forms) and they, as building blocks, maintain the property of being a hairy
zig-zag. For example, the constraint Cj<;; is represented as the following

building block

i.e., j is going to be an upward hair and i, k are going to be the elements of
the backbone zig-zag. When P, and @) are disjoint, the concatenation P; * Q)
produces a disjoint union of posets.

Corollary 1. If (V¥ , W#) is an alignment without gaps, then every admis-
sible complete set of operations is unambiguous and it has a principal poset
which is a disjoint union of zig-zags.

3The tables A.1 and A.2 may have to be adjusted, according to the rules described
earlier, if there are any collapses of the symbols.
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Proof. When there are no indels, then each constraint is of the form of a two
element chain. Such constraints generate disjoint unions of pure zig-zags. H

Theorem 2. For every hairy zig-zag P there are strings V,W and an align-
ment (V#,W#) together with an admissible unambiguous cso O such that
the principal poset for O is isomorphic to P.

Proof. The proof is basically a reverse construction from the proof of Theo-
rem 1. The basic intuition for the present proof is that a given hairy zig-zag
we present, as a concatenation of building blocks which were mentioned in
the proof of Theorem 1. The enumeration of the elements in P suggests an
alignment: the number of the operations associated with the blocks in the
alignment is equal to the number of the elements in P; elements of the back-
bone of P correspond to substitutions, upward hairs correspond to insertion
blocks, while downward hairs correspond to deletion blocks. For each pair
of consecutive substitutions (i.e. consecutive elements of the backbone) we
select the context which imposes the constraints for building the block of
the poset which is contained between the two elements.

Instead of giving all the details of the proof we illustrate the idea with a
sufficiently complicated example. Consider the following hairy zig-zag P.

It has 13 elements, 7 of them (positions: 1,3,5,7,9,11,13) form the backbone,
4 are upward hairs (positions: 2,4,6,12) and 2 are downward hairs (positions:
8,10). This suggests the following alignment.

1 2 3 4 5 6 7 &8 9 10 11 12 13
ry — T2 — X3 — T4 ITp Tg Ty Ty — X9
Yr Y2 Ys Y4 Ys Yo Yr — Y8 — Y9 Yio Y11

The variables z; and y; are metavariables (place holders) for actual symbols
of the alphabet. We leave them for the time being unspecified.

Consider the first insertion block (address 2 in the alignment). We have to
enforce the constraint 1 < 3 < 2 for this block. It follows from Chart 1 in
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the Appendix that such a constraint is generated by the pair of contexts
(z9,y1) (this is the pair (b,a’) in this chart). In a similar way we obtain
the following pairs for the other indels: (ys,x2) for insertion 4, (y7,x3) for
insertion 6, (zg,y7) for deletion 8, (yg,z¢) for deletion 10, and (y11,xg) for
insertion 12.

This choice of the pairs of contexts induces the following substitutions:

S3,y17y5v S5,$2,y7’ S77$37$6’ S9yy77y9v Sll,w&yn'

Thus the complete set of operations for the above alignment, which generates
P as the principal poset, is

O - {Sla 127 53,y1,y57 I47 S5,m2,y7a Iﬁa S7,{L‘3,(Eﬁa D87 59,y7,y97 DlO) Sll,a:s,yna 1127 813}'

Let us notice that if we take two consecutive substitutions, say 3 and 5, then
the constraints for choosing the right context for 3 and for choosing the left
context of 5 do overlap. For this reason, even thought the substitutions 1
and 13 are always admissible the constraints generated by substitutions 3
and 11 are enough to ensure the right shape of the poset on both of its
ends (i.e. the the relative order between the elements 1,2 and 3; as well as
between the elements 11,12,13).

In the above reasoning we have been using Chart 1 in the Appendix, i.e.
we assumed that the symbols in the corresponding indel blocks are pairwise
different. Five symbols are enough to fulfill this requirement. Let the alpha-
bet consists of the following symbols {a,b,c,d,e}. The following alignment
has sufficiently many different symbols

1 2 3 4 5 6 7 8 9 10 11 12 13
a — b — a — b ¢c a ¢ b — a
d ¢c e ¢ d ¢c e —d — e ¢ d

The complete set of operations for the above alignment is given below.
O = {51, I3, S3.d,¢: 4 S5 p,e5 L6, S7,0,a5 Dss 59,¢,es D10, S11,a,d5 [12, S13}-

The principal poset generated by the above cso for the above alignment is
isomorphic to P. =

The followng example is a real life one. We present a poset of a local
contextual alignment and the corresponding principal poset for two Seryl-
tRNA synthetases from Methanobacterium thermoautotrophicum (SWISS-
PROT accession number O27194) and Caulobacter crescentus (TrEMBL
accession number Q9A6T4).
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As one can see, there is only one hair. It corresponds to the one-element
insertion. The poset has 8 connected components (3 of which are isolated
points). The maximal chain has 8 elements.

M\M\w\/\m a

SHWLIPTAEVSLTNIVREQLVAEEELPMRLTALTP-SFRAEAGSAGRDTRGMIRQHQFYKVELVSITTPDQSEAEHQRMVECAETVLKKLELPFRTMLL
GYVIAPAQCEPFYQFLSHEVVSAEDLPVKFFDRSGWTYRWEAG----GSKGLDRVHEFQRVELVWLAEPGETEEIRDRTVELSHDAADELELEWYTEVG

Figure 2.3: Local contextual alignment and the corresponding principal
poset for Seryl-tRNA synthetases from Methanobacterium thermoautotroph-
tcum and Caulobacter crescentus.
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Chapter 3

Algorithms for Contextual
Alignment

3.1 An algorithm for a gap-free alignment

Below we present a linear time algorithm for contextual alignment without
gaps. The input sequences V, W must be of equal length. Note that in the
non-contextual case the algorithm is completely obvious. Indeed, if there
are no gaps, the alignment is unique and its score is the sum of scores of
matches/mismatches at individual locations. In the contextual case, how-
ever, it is not only the operations that matter, but also the order in which
they are performed. Different orders of operations may yield different scores,
so our algorithm finds the generating poset of all the optimal admissible
chains, as well as computes the score.

We know, that for gap-free alignment, there is always a unique generating
poset of all the admissible chains, and that it is a disjoint union of zig-zags
(see Corollary 1). Our algorithm is based on dynamic programming and
its main idea is to walk along both sequences to be aligned, choosing the
optimal one-point extension of the already found poset.

We transform V into W. At step i+ 1, for i = 2,...,n — 1, we already have
two generating posets P, and P, of the operations transforming V; ... V; into
W1 ... W;, and two corresponding scores. They were calculated in step 1.

Py is the generating poset of all the admissible chains which give the optimal
score among those in which the substitution of V; into W; is performed after
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the substitution of V;—y into W;_y. Dually, R is the generating poset of all
the admissible chains which give the optimal score among those in which the
substitution of V; into W; is performed before the substitution of V;_; into
Wi_1. Visually, zig-zag P, ends with /, while P ends with \. S, and S\
are the corresponding optimal scores (recall that the rightmost substitution
does not contribute to the score!).

We need to compute the new values for the step ¢ + 1. We denote them by
P/, S} and P!, S\.

P/’ can be obtained either from P, or from P by extending it by the sub-
stitution of Vj;1 into W1, performed after the substitution of V; into W;.

Le., P/’ is chosen from two concatenated posets:
P/ * Ci<i+1 and P\ * Ci<i+1 (3.1)

in the following way. The scores corresponding to these two posets are
as follows (recall that M,(-,-) is a contextual substitution table): S, +
My, v, (Vi, Wi) and S\ + My,_, v;,, (V;, W;), respectively. Then P; be-
comes the poset of (3.1) which gives a larger score,! and that value becomes
S}. P\’ and S{ are calculated analogously.

A special case is when W; = V; and W;11 = V;41. In this case the operations
at addresses 7 and i+ 1 are not comparable in the principal poset: any order
of these two is admissible and gives the same score.

The initialization of the variables is done as follows. When ¢ = 2 then S,
and S\ are set to 0, while P, and R are set to Ci<2 and Ca<1, respectively,
unless Vi = Wy, in which case it follows that the operations at addresses 1
and 2 are incomparable in the generating poset.

The algorithm terminates after completing step n — 1. The output is either
(S, P) or (S\, R ), depending on which of the values S, and S\ is larger.

3.2 An algorithm for an alignment with gaps

Below we present a quadratic (precisely, of O(|X|mn) time complexity) al-
gorithm for contextual alignment and an affine gap penalty function. The
efficiency of the algorithm is based on the observation that for an affine
gap penalty function we can compute the score of an indel, by gradually

LIf posets give the same score, then any one of them is chosen as P;.
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extending the indel one symbol at a time. This way, when extending the
alignment, it suffices to consider a constant number of cases.

The main idea of the algorithm is to walk along both sequences, choosing
the optimal extension of the already found alignment of prefixes. At each
step we have the following possible extensions: (i) a single substitution, (ii)
an insertion (starting new one or extending the existing one), (iii) a deletion,
analogously.

The algorithm uses the dynamic programming approach and works with 7
three-dimensional arrays indexed by the positions from the word V', positions
from the word W and the elements of .. We use 3 insertion arrays, 3 deletion
arrays and one substitution array.

Let us consider a type (ii) extension, i.e., we focus our attention on a single
insertion block:

i k
a — — ... b
a ¢ ¢ - - - ¢y T
a B

For the simplicity of presentation we use, as before, numbers i, j, k as the
addresses of the blocks, i.e., the positions in the alignment. The index
a =1...nis used to number positions in V', and § = 1...m for positions in
W. The letter z in the above figure stands for an arbitrary, not yet known
letter from X, which replaces Wj. Considering all £ € ¥ is necessary to
profit from the affinity of the gap penalty function and to be able extend an
insertion gradually in the course of computation. & corresponds to the third
dimension in our insertion arrays. Roughly, this third dimension enables us
to treat left substitution ¢ and right substitution k separately.

a ‘ a ‘ Cm
\/2] ‘ Cick<j ‘ Ci<k

Table 3.1: Constraints for insertion block determined by left contexts for k.

Each insertion array stores at position (a, 3,&) the maximal score of align-
ment of V7...V, and W7...Wj3 which ends with an insertion, under the
assumption that W1 = x and that the insertion is immediately followed
by a substitution on the right (substitution k£ in the above figure). We use
three insertion arrays, one for each possible selection of the left context for
the right substitution k.
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° Iv;'c,j (o, B,x) stores the maximal score as explained above under the
additional condition that a is the left context for the right substitution
k (see Table 3.1). This selection results in the constraint V}, i.e. the
rightmost substitution k& precedes insertion j and left substitution 7.

® Ic, p; (a, B, ) stores the maximal score as explained above under the
additional condition that o’ is the left context for the right substitu-
tion k. This selection results in the constraint Cj.j<;, i.e. the left
substitution is followed by the insertion which is followed by the right
substitution.

e Ic,_,(a, B,z) stores the maximal score as explained above under the
additional condition that ¢, is the left context for the right substitu-
tion k. This selection results in the constraint Cj, i.e. the rightmost
substitution k is performed after the insertion j.

Note that parameter x together with the subscript of I contain the infor-
mation which is necessary and sufficient to correctly evaluate an alignment
ending with an insertion.

For the dual case of the deletion block we use the following three arrays:

D,k , D¢y ;s Dcojoy;- Table 3.2 is obtained from Table 3.1 in the way
K2V

described in Section 2.2. Together with each entry of tables I and D we

store also the selected left context for substitution k. This will be necessary
in (3.2) and (3.3) below.

a" a ‘cm

/\f,j ‘ Cick<i ‘ Cr<j

Table 3.2: Constraints for deletion block determined by left contexts for k.

For the case of the extension by a single substitution we have array S(«, 3, )
It stores the maximal score of an alignment with gaps of words V; ...V, and
Wi ... Wg which ends with a substitution V,, = Wjp, whose right context is
T.

Since our algorithm requires always left and right context for each consid-
ered substitution, we need to extend arrays V and W by the new, artificial
entries Vg, V41 and Wy, Wi, 41. Recall that the leftmost and rightmost
substitutions do not contribute to the score of the alignment, they serve
only as contexts for the neighboring operations. Hence the choice of the
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new entries has a negligible effect on the resulting score — we decided to
choose these values in an ad-hoc manner. In the implementation of our algo-
rithm we chose methionine M = Vjj = W}, as the leftmost entry and alanine
A =V,411 = Wiyt as the rightmost entry.

In the course of computation there are two possibilities to update insertion
arrays: (i) starting a new insertion; (ii) extending an existing one. The
latter case is simpler: the score of extended alignment is calculated as

L(a,B — 1,z) + GapExt for x € {\/Z’j,C’i<k<]~,Cj<k}

When starting a new insertion we have to calculate the score of the substitu-
tion which precedes it. To achieve this aim we consider all possible selections
of the right context for this substitution. The corresponding scores and con-
straints are summarized in Table 3.3 below.

right context | constraint | score of extended alignment
b VI S(a, B —1,b) + GapOpen
x Crei<j S(a, 8 —1,2) + GapOpen
c1 Ci<i S(i,j" —1,¢1) + GapOpen

Table 3.3: Constrains and scores determined by right context for .

As we are looking for the optimal alignment of prefixes Vi ...V, and Wy ... Wp,

we choose the context pair (i.e. the right context for the left substitution and
the left context for the right substitution) which does not generate the con-
tradiction and which maximizes the score. The constraints resulting from
all possible pairs of contexts for insertion arrays are as follows:

(ba a) (mv a) (Clv a) (bv a/) (za a‘/) (Clv a,) (b’ Cm) (1‘, Cm) (Clv Cm)

L | Creaicj | Crej<i || Cichej 1 1 Cicj<k 1

2,k

v.7

J

E.g. for the left context a there are two admissible pairs (z,a) and (¢, a) and

we should compare the corresponding scores S(«, 5 — 1,z) + GapOpen and

S(a, B —1,¢1) + GapOpen with the score of extended insertion I, (a, 8 —
k

1,2) + GapExt and choose the maximal value. The update rules for three
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insertion arrays are as follows:

Lij(a,8—1,z)+ GapExt

k
Iv?j(aaﬁvx) i=max 4 S(a,f — 1,z) + GapOpen,
S(a, B —1,c1) + GapOpen

o Cyopes (0, B —1,x) + GapEuxt,
e, e, (@, 8,2) = max{ 5’(;], B —1,b) + GapOpen
Io; (o, B — 1,z) + GapExt,
Io, (o, B, ) :==max S(a, B —1,b) + GapOpen,
S(a, B —1,¢1) + GapOpen

To calculate a new entry in the substitution table, say S(«, 8,&), we choose
the maximal value among the following 8 possibilities:

e 2 cases for the scenario when the substitution W, — Wj follows an-
other substitution:

— left substitution precedes the right one: S(a — 1,5 — 1,V,) +
Mngl,z(VOH Wﬂ)

— right substitution precedes the left one: S(a — 1,5 —1,W3) +
My, z(Va, Wp)

e 3 cases for the scenario when the substitution follows an insertion.

I*(Oz -1,5-1, Wg) + Ml*,a:(vaa Wﬁ) for * € {\/Z,’J, Ci<k<j7 Cj<k};
(3.2)
where [, denotes the corresponding left context in each case. This
context is stored together with the array I., as mentioned previously.

e 3 cases for the scenario when the substitution follows a deletion.

De(a—1,8—1,Vy) + My, (Vo,W3) for ec {/\ik, Cjick<i,Crej},
(3.3)
where [, denotes the corresponding left context in each case.

The generating posets are reconstructed in the following way. Starting from
the maximal position in substitution array, and backtracking in all 7 arrays
determines the set of operations performed to achieve the maximal score,
and the corresponding alignment. By comparing the contexts we also de-
termine the set of generating posets. Each step of the algorithm, in which
the substitution is considered corresponds to a small (two- or three-element)
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Algorithm 1 the overview

{ initialization }
forrz €¥ do 5(0,0,z):=0;
forre¥, a>0,8>0do S(a,0,x):=—oc; 5(0,5,x):= —o0;
forzeX a=0...n,*xe{V}), Cicpe;,Cjcr} do IL(a,0,2):=—o0;
forzeX =0...m, e € {N,},Cjcpci;Chcj} do Ds(0,8,z) := —o0;
{ end of initialization }
for a=1...ndo
for =1...mdo
for x € ¥ do
calculate the 7 arrays at position («, 3,z).
end for
end for
end for

S(’I’l, m, Vn-i-l)a S(”a m, Wm+l)7 * € {\/ija Ci</€<j7 C]</€} }

Score := max
{ ]*(TL, m, Wm+1)7 D, (na m, Vn+1) LS {/\},ka Oj<k<i7 Ck<]}

poset, and by concatenating these posets in reversed order, we reconstruct
the generating poset (potentially with ambiguous indels). Each small poset
is determined (tables from the Appendix are used here) by the partition of
the set of symbols which serve as the contexts for the corresponding pair of
substitutions.

Correctness of the algorithm. It can be proved by induction on a and
that all insertion, deletion and substitution tables are assigned the correct
values in the course of the computation at position («, 3,x), for every .
The case of substitution is straightforward, since our algorithm tries all
possibilities. The case of insertion (and deletion, dually) needs a little care.
As candidates for the best score at position (a, 3) we consider:

(i) alignment ending with a singleton insertion;

(ii) the extension of the best alignment at position (o, 5 — 1).

Correctness of this step follows from the following lemma.

Lemma 1. Assume that the optimal alignment of Vi ...V, and Wy...Wjp
ends with an insertion of length | > 2, and that W41 = x, and let the
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left context of the right substitution be c. Then the optimal alignment of
Vi...Vo and Wy ... Wpa_1 ends with an insertion of length | — 1, under the
assumption that Wy equals & and that left context of the right substitution
18 C.

Proof. Follows immediately from the assumption of the affinity of gap penalty
function. =

Algorithms for local alignment. As with the non-contextual case (see
[SW81]), the algorithm for local alignment is in each case a minor modifi-
cation of the global alignment algorithm. The idea is to add an additional
option while filling in the arrays: to give up with the so far constructed
alignment and start all over in the middle of the sequences by resetting the
score to 0. The local versions of the above algorithms inherit the complexity
of their global counterparts.
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Chapter 4

Substitution tables

The idea of the approach is to a large extent based on the Henikoff & Henikoff
BLOSUM table [HH92].

e The main source of data are blocks of gap-free aligned sequences.

e The method to eliminate the influence of large number of highly similar
sequences is by clustering such sequences together and subsequently
weighing the contribution of each cluster equally, no matter how many
sequences it contains.

However, we have goals substantially extending those faced by the Henikoffs.
First of all, we need to make the substitution score dependent of the context.
Next, we want to break up the symmetry of the tables.

The former is conceptually not difficult, however, it requires large amounts
of data to yield statistically significant results. For the latter, we decided
to adopt the convention that: at each position, the relatively most frequent
residue is the primitive one, being aware, that it is a highly speculative one.

Input data. The input data are blocks of many gap-free aligned protein
sequences. In particular, all sequences in one block are of equal length.

Parameters. The following are the parameters of the algorithm, and their
choice affects the resulting tables.

e The clustering constant p € (0,1).
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e The significance threshold ST.

Clustering. In order to compensate for the high influence of many highly
similar sequences, we introduce clustering. We cluster together sequences
which share more than a fraction of p of residues for the purpose of creating
the statistics, exactly as it has been done while creating BLOSUM (op cit.
[HH92]). All blocks and all positions are taken into account.

Clusters in a block are connected components of the graph, whose vertices
are sequences in the block and whose edge relation ~ is defined as follows:

{i:1<i<|s| & s(i) = t(i)}|

(s~t) <= ]

= p-

Subsequently we assume that each block is clustered. The cluster of the
sequence s in block B is denoted [s]p.

If B’ is a subset of block B, then the cluster of the sequence s in B’ is
[s]p := [s]p N B’, even though the latter set need not be connected in the
graph B’ with edge relation ~. We adopt this choice to avoid the large cost
of recomputing the clusters over and over again.

Henceforth we assume all blocks to be clustered and all their subsets to
inherit the clusters in the way described above.

Identifying contexts. For each block B and each pair of positions ,7+ 2
not, exceeding the common length of the sequences in B, and for each choice
of amino acids a and b we create the subblock Bf;b+2 ={s € B:s(i) =
a & s(i+2) = b}. 7

q,b

Subsequently, the subblocks B; o over all B and all 7 are used to calculate
the frequencies and substitution rates in the context a_b.

Frequencies in the given context. For every triple a, b, ¢ of amino acids
and each cluster W in each subblock B ;ZZ we calculate the frequency of ¢

found between a and b in W, denoted f{}}b(c) in W, by the following formula:

a,  HseW:s(i+1) =c}
fi(e) = 7 -
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Now the global frequency f, ;(c) of ¢ being found between a and b is defined
by

. b
ab W is a cluster of Bf;+2,

c) := average c): : .
Jas(e) & { W B ablock, i 12 < the length of B
Note that averaging over the real frequencies in clusters amounts exactly to
imposing that the contribution of each cluster is equal, irrespectively of its
cardinality.

The primitive amino acid. Now, for each subblock Bf ;2_2 the amino
acid ¢ for which the ratio

fBZ’iiz (c)

fa,b(c)
is the highest, is assumed to be primitive at position i + 1 in B’ . This

1,0+2°
particular ¢ is denoted ca.
B;'io

Mutation rates. For each quadruple a, b, ¢, d of amino acids the observed
mutation rate of ¢ into d in the context a_b, denoted m,(c, d) is given by
the formula

B is a block,
W is a cluster of B
7b ,b , 29
map(c,d) = average 4 fiy"(d) - fiy'(€) ;5 o < e lengch(;jB,
C=Cgap , |W| > ST
i,i4-2

In this formula, again weighing each cluster equally (but excluding too small
clusters, where the frequencies are statistically insignificant), we calculate
the frequency of ¢ being replaced by d, in the context a_b.

The expected (under the null hypothesis) mutation rate of ¢ into d in the
context a_b, denoted M, ;(c,d) is given by the formula

Ma,b(ca d) = fa,b(d) : fa,b(c)‘

33



Note that the null hypothesis is symmetric, since it assumes that the residues
are aligned at the same position by a pure accident, and therefore neither
of them is primitive (or distinguished in any other sense).

Log-odds. The score of substituting ¢ by d in the context a_b, i.e., the
entry in the tables we are creating, is defined by the formula

mgp(c,d) > '

scoreqp(c, d) := logy <M d)

This method defines the scores as log-odds of the observed and expected
mutation rates. For non-contextual gap-free alignment it has been proved by
Altschul [Alt91] that this is essentially the only choice, because even tables
constructed in another way effectively generate a model of substitution with
mutation rates whose log-odds give back the values from the tables.

4.1 The Difficulties

The above algorithm has been implemented by T. Gajewski [GajOl]. It
appears that even for moderate values of ST and p many values in the tables
remain undetermined, because the base of blocks used does not provide
enough data. For some substitutions in some contexts, even if they happen
in the base, they are either removed by the principle of disregarding clusters
of cardinality smaller than ST, or the amino acid to be substituted is indeed
never chosen as the primitive one.

Being aware of such a risk, we can propose several remedies. Which of them
will turn out to give the best results remains to be seen.

4.1.1 Reduced context tables

A context reduction function is any mapping ¢ from the set of amino acids
to another set D of reduced contexts. An example could be D = {H, P}
with

p(c) =

H if ¢ is hydrophobic,
P if ¢ is polar.

Then, in order to obtain an algorithm for reduced context tables, we modify
the following fragments of the main algorithm.

34



Identifying contexts. For each block B and each pair of positions ,7+ 2
not, exceeding the common length of the sequences in B, and for each choice
of a,b € D we create the subblock BZ;Z_Q ={se B:¢(s(i)) =a & ¢(s(i +
2)) = b}.

Subsequently, in the whole algorithm a and b range over elements of D, and,
in particular, the contexts are pairs of elements of D.

The reduced context tables can be used as such, for reduced context align-
ment, or as a source of missing values in the general tables. For the latter
purpose, one can substitute the undetermined values score,p(c,d) in the
general tables by the values scoreg(,) o) (c,d) for a suitable context reduc-
tion function ¢.

Another, quite different purpose of reduced context tables is to use them as a
limiting case, allowing one to compare the tables produced by our algorithm
with their non-contextual inspiration, the BLOSUM tables.

In order to achieve that, one takes a constant context reduction function.
This amounts to saying that all contexts are the same, i.e., the context does
not play any role in the construction of the tables. The outcome tables can
be then directly compared with the BLOSUM tables (keeping in mind that
BLOSUM is symmetrical, while our tables are not). It turns out that they
are indeed quite similar[GajO1].

4.2 The Tables

Using the presented method we have constructed several dozens of families
of contextual substitution matrices. Each set of matrices is the outcome of
our procedure for a fixed set of parameters’ values. Among all the input
parameters the most interesting are: the source of blocks and the context
reduction function.

The source of data. As the source data for our procedure we took two
different data-bases of biological sequences:

e BLOCKS Database [HGPH00, HHP99]: blocks are multiply aligned
(without gaps) segments corresponding to the most highly conserved
regions of proteins. The blocks are made automatically by looking for
the most highly conserved regions in groups of proteins documented
in the Prosite Database.
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e COGs Database [TKL97]: Clusters of Orthologous Groups of pro-
teins (COGs) were created by aligning protein sequences encoded in 44
complete genomes, representing 30 major phylogenetic lineages. Each
COG consists of individual proteins or groups of paralogs from at least
3 lineages and thus corresponds to an ancient conserved domain. The
alignments found in COGs may contain gaps.

The database of COGs does not contain itself blocks of sequences
which can be directly used by our procedure, which requires gap-free
alignments of multiple sequences. Therefore we extracted gap-free
blocks from the multiple alignments cutting off the maximal gap-free
fragments of the alignments.

The comparison of matrices built from these two datasets shows that, de-
spite of quite different origins of molecular sequences (mammalian protein
sequences in the case of BLOCKS vs. whole genomic sequences of several
microorganisms in the case of COGs) the resulting matrices are not sig-
nificantly different. The explanation for this phenomenon is very rigorous
clustering which is unavoidable when identifying contexts.

Partitions of the set of amino acids. The appropriate choice of con-
text reduction function is crucial for the applications, particularly because
the quantity of available data is too small for creating full-context tables. It
seems reasonable to consider the partition of the set of amino acids which re-
flects their chemical properties and which is suitable for studying the molec-
ular evolution.

We have made some preliminary experiments using three different context
reduction functions:

e Full context, i.e. we consider 400 different pairs of contexts. The
resulting matrices have a number of non-determined entries, which
should be filled with reduced context values. In our experiments these
values are taken from corresponding tables for 6 groups of context. The
number of non-determined entries depends on: the clustering constant,
the significance threshold and the context reduction function. For full
context tables this number is between 70384 and 87787, while for 6
context group table it is between 12 and 302.

e Contexts with 6 groups. These groups are based on accepted point
mutation data [DSO78]. The molecular sizes and shapes are very
similar within each group.
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e HP contexts. We consider the partition of amino acids into the polar
ones {07 D’ E? G’ H7 K’ N? Q? R? S? T'/ Y} and the
hydrophobic ones {A, F,I,L, M, P,V,W}.

‘ GROUP NAME ‘ AMINO ACID RESIDUE
Small Aliphatic Alanine, Proline, Glycine
Acid amide Glutamine, Aspargine, Glutamic Acid, Aspartic Acid
Hydroxyl & Sulfhydryl | Serine,Threonine, Cysteine
Aliphatic Valine, Isoleucine, Methionine, Leucine
Basic Lysine, Arginine, Histidine
Aromatic Phenylalanine, Tyrosine, Tryptophan

4.3 Evaluation of the Tables

4.4 Statistical Properties of the Tables

Context sensitivity. To see how much the scores are indeed context-
sensitive, we took the contextual substitution matrix in the case of 6 con-
text groups. For each substitution we calculated the minimal and maximal
value of the substitution score over all possible contexts, the mean and the
standard deviation. If the substitution rates (and thus also scores) were
indeed context-independent, all those values should be almost equal, except
the standard deviation, which should be around 0. The substitutions which
are strongly context-dependent are listed below.
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substitution | mean | standard deviation min max

His — Pro | -1.487 6.703 -12.498 | 0.276
Val — Asp | -4.521 4.794 -11.918 | -2.577
Asp — Met | -3.21 4.335 -9.762 | -0.524
Gly — Met | -3.427 3.988 -13.401 | -1.393
Pro — Met | -1.86 3.646 -12.339 | -0.349
His — Asp | -0.108 3.603 -10.915 | 0.946
Ala — Asp | -3.606 3.357 -10.643 | -1.2

Arg — Cys | -2.426 3.053 -10.9 0.106
Glu — Cys | -3.351 3.044 -11.488 | -0.325
Thr — Cys | -1.602 2.974 -10.658 | 0.403
Cys — Lys | -0.857 2.954 -10.085 | 0.535
Ile — Asn | -3.174 2.933 -11.675 | -1.024
Tyr — Asp | -2.088 2.807 -10.506 | -0.136
Leu — Cys | -3.053 2.618 -9.492 | -0.44
Met — His | -0.555 2.438 -7.35 1.347

Asymmetry in the tables. The asymmetry in matrices implies that the
score of an optimal alignment depends on the order of compared sequences.
Le., the score of transforming sequence W into sequence V' can differ from
the score of the reverse transformation. In some cases this difference can be
significant. In general the degree of asymmetry observed does not depend
crucially on the number of context groups, which is illustrated below. This
rules out the possibility that the change of the shape of the empirical curves
with increasing number of context groups, are due to the context influence
rather than growing asymmetry of the tables.

The relative entropy. The relative entropy is defined as a weighted av-
erage of all substitution scores, where weights are the observed frequencies
of substitutions [Alt91]. In out setting we define the entropy as follows:

H=>"> "mgp(c.d)scoreap(s,d) =Y > mqp(c.d)log ( % ) |

a,b c,d a,b c,d
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Figure 4.1: The distribution of differences between the score of an alignment
versus the score of the reverse-direction alignment. The histograms of dif-
ferences are shown for all pairs of sequences from COG0013 (Alantyl-tRNA
synthetase). The left one is for contextual tables (6 groups of context) and
the right one is for one-context (i.e., non-contextual) tables. The maximal
difference is 169, rather low if compared with the maximal score 2051.
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In information theoretic terms, H is the relative entropy of the target and
background distributions and intuitively it measures the average information
available per position to distinguish the alignment from chance. The figure
above illustrates the relationship between p, the parameter of clustering,
and relative entropy for contextual tables compared with the results for the
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BLOSUM family.
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Chapter 5

Statistical significance of
contextual alignment

The outcome of the alignment algorithm is a raw score which is a function of
the chosen similarity matrix and gap penalty. These raw scores depend upon
the length of the original sequences. Therefore, the measure of the quality
of the alignment is needed to ensure that a high raw score is obtained due
to the homology and not due only to aligning long sequences. The best
method used to estimate the statistical significance of the alignment is to
approximate the probability distribution of scores from aligning random
sequences. Then the raw score can be expressed as the likelihood of achieving
such a score or higher by aligning random sequences of the same lengths.

5.0.1 Global alignments.

Unfortunately, under even the simplest non-contextual models and scoring
systems, very little is known about the probability distribution of optimal
global alignment scores. The standard approach here is to express the score
of interest in terms of standard deviations from the mean (Z-value), or to
perform Monte Carlo simulations that provide rough distributional results.

The analogous approach can be applied in the case of contextual global align-
ment. Particularly, it would be of interest to adopt the method from [WB01],
which empirically derive the distribution of Z-values of scores, to the case
of the contextual setting.
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5.0.2 Local alignments.

In the case of local non-contextual alignments the statistics for the scores
are well understood. The precise mathematical results are given for un-
gapped alignments [KA90, DKZ94]. If the presence of gaps is allowed ana-
lytical derivations exist only for some special cases of scoring systems [AW94,
MT99]. However, by extensive simulation experiments the applicability of
the method for the ungapped case for the analysis of alignments with gaps
has been verified [Mot92, WV94, WV94a, VW95].

In this section we recall the main results concerning the statistical signifi-
cance of local gap-less non-contextual alignment and we show how to gen-
eralize them to work in the contextual setting. In particular, we prove that
the probability distribution of properly normed contextual scores follows
approximately the Gumbel Extreme Value Distribution (EVD) [Gumb8].

The outline of this section is as follows. First, we formulate the results for
the non-contextual case. Then we give the analogous statement when two
aligned sequences are generated by two independent Markov chains. We
show that the contextual alignment model can be expressed in this way.

As a consequence the statistical significance of contextual alignment can be
estimated using the method analogous to that of [VW95].

A standard extreme value distributed random variable G is defined by

P(G < t) =exp(—exp(—t)).

Shifting and rescaling yields a two-parameter family of variables

H=0G+¢,

where £ is called the location and 6 the scale of H.

The following theorem states that the maximal gap-less local alignment score
of two independent sequences with independent and identically distributed
letters asymptotically follows the Gumbel distribution.

Theorem 3 ([DKZ94]). Let X;...X,, and Y;...Y, be two independent
1.4.d. sequences with values in some finite alphabet X distributed according
to pu1 and po, respectively. Let S : X x X — R be a score function, and let
6 be a positive solution of £, o, exp(S0)] =1, i.e.:

S exp(0S(ab)u(a)u(®) = 1.

(a,b)ETXT
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Let H,, denotes the optimal ungapped alignment score, i.e.:

L-1

H,, = max kZ_O S(Xishs Yik)-

There exists a constant K such that

21
lim P(H, < %(") + 1) - exp(K exp(—0t,)) = 1

n—o0

2log(n)
0

for any bounded sequence t,, such that t, + is a possible value of the

score.

In the case of i.i.d. letters the Gumbel approximation is a consequence of
approximating the number of matching regions scoring above some thresh-
old by a Poisson distribution. It is assumed that the expected score per
letter is negative. Hence positive scoring regions are rare events. These
events are clearly dependent, thus the classical Poisson approximation that
deals with counts of independent rare events cannot be applied. To deal
with the dependencies the Chen-Stein method is used. It allows one to es-
timate the quality of approximation: the Chen-Stein theorem says that the
variation distance! between the count variable W, which counts the number
of high scoring regions and the Poisson variable Z()\) is comparable to the
discrepancy of their second moments, i.e. E[W?] — E[Z(\)?].

The analogous statement for asymptotic behavior of the score when the
two aligned sequences are modeled by Markov chains has been proven re-
cently in [Han03]. The proof of Theorem 4 below generally follows the same
methodology. Gumbel approximation is a consequence of an underlying
Poisson process approximation of the positions in the score matrix exceed-
ing a high threshold. However, this Poisson approximation requires several
assumptions about the structure of the considered Markov chains and the
score function.

Consider two independent stationary irreducible and aperiodic Markov chains
(Xk)k>1 and (Y%)r>1 on finite state-space £ defined by transition probabili-
ties matrices P and @, respectively, with invariant probability distributions
mp and mg. Assume that, these Markov chains generate two sequences to
be aligned. We are going to analyze the behaviour of the stochastic pro-
cess called Markov additive process (MAP). MAP corresponds to a random

Y Variation distance between two probability distributions v, on X is defined by
v = pll = 3 Xpex V(@) — p(@)] = maxacx [v(A) — p(A)]-
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walk, whose increments are controlled by a Markov chain. For a given score
function S : £ x £ — R define a random walk (S,,),>1 by

Sn=">_ S(Xi,Yi).
k=1

The increments of this walk are controlled by two-dimensional Markov chain
(X%, Yi)r>0 with the state space £ x £ and transition probabilities P ® Q,
where ® is a direct product (Kronecker product) of two matrices.

For 6 € R define a £ x £ matrix ®(0) as follows:

q)(g)(xo,yo),(ml,yl) = eXp(OS(xla yl))Pmo L1 Qyo,yl .

Entries of this matrix correspond to moment generating functions for incre-
ment distribution. The change of state from (zg,yo) to (z1,y1) contributes
S(z1,y1) to a random walk S,,. The matrix ®(0) is clearly a positive matrix
with real eigenvalues. Denote by ¢(0) its spectral radius (i.e., its largest
eigenvalue, called also the Perron-Frobenius eigenvalue). Let 6* > 0 be the
unique solution of

6(6) = 1 (5.1)

It is proved in [Han03] that the existence and uniqueness of 8* is guaranteed
due to the two-dimensional negative drift condition:

(i)
> S(z.y)mp(a)mly) <0

zyel

Define similarly the £3 x £ matrices ®;(6) for i = 1,2 by

q>1(9)(330,y0,Z0)($1,y1,Z1) = exp(0S(x1,y1) + 05(z1, Zl))Pxoleyo,yl Q20,1
q)2(9)(mo,yo,zo)(m1,y1,z1) = exp(OS(xl, Zl) + QS(yl, zl))PfEO,fm Py07y1 QZO,Zl

Let ¢;(0) be the Perron-Frobenious eigenvalues for ®;(0) for i = 1, 2.

We require that Markov chains P and @ fulfill the following regularity con-
dition:
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3 3,
¢1(10><1 and ¢2<19><1,

where 0* is the solution of (5.1).

The score function S has to satisfy the following non-degeneracy conditions
w.r.t P® Q:

(iii) there exist cycles (z1,x9) w.ar.t. P and (y1,y2) w.r.t. @ satisfying

S(x1,y1) + S(x2,y2) # S(x1,92) + S(@2,51).
(iv) there exist n > 0 and two cycles (z1,...,zy,) and (y1,. .., yn) such that

Y71 S(zk, yk) > 0.

The following theorem is an analogue of Theorem 3.

Theorem 4 ([Han03]). Let X;... X, ... and Y7 ...Y, ... be two indepen-
dent, stationary, irreducible and aperiodic Markov chains with finite state
space &, transition probabilities P and Q) and invariant measures mp and mq,
respectively. Let S : € x € — R be a score function satisfying (i), (iii) and
(iv). Assume that the condition (ii) is fulfilled for 0* defined as in (5.1). Let
H,, denote the optimal ungapped alignment score of X1 ... X, with Y1...Y,.

Then there exists a constant K* such that

21
lim P(H, < o8 (n)

n—oo o*

+tp,) - exp(K* exp(—0*t,)) =1

for any bounded sequence t,, such that t, + 2100%5(") is a possible value of the

score.

The explicit formula for the constant K* can be found in [Han03].

Markov chain alignment and contextual model. We apply Theo-
rem 4 to the statistics for ungapped contextual alignment. To this aim we
define Markov chains to be aligned and a contextual scoring function.

JFrom Corollary 1 we know that for an ungapped contextual alignment
every admissible set of operations is unambiguous and the principal poset
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is a disjoint union of zig-zags. The optimal alignment is maximized for all
admissible cso’s. As we need to evaluate the score function, the cso should be
fixed. To this aim we can define the random variable equal to the maximum
local score H,,, given a fixed cso z and then to ask for the distribution of
the random variable

HP' = H,..
n all admiIsI;iaf))l(e cso’s z nlz

If all H,,|, were independent and had EVD distribution it would follow from

the so called max-stability property of EVD family that the new maximum

was also EVD distributed [Gumb8]. Unfortunately in our case these vari-

ables are not independent.

To overcome this difficulty we work with averaged contexts, i.e., we penalize
the substitution also considering two surrounding letters but we do not care
about the relative order of operations. Instead, we consider all the possible
contexts (there are at most 4 of them if indels are not allowed) for the
substitution and take the average of their contextual scores.

This approach differs from the real contextual alignment. Even in the stan-
dard non-contextual score, e.g. given by a BLOSUM matrix, each entry can
be viewed as an average over all 400 possible pairs of context.

However, extensive simulations shows that the difference of distributions of
alignment scores between the true contextual alignment and the ‘averaged’
contextual model is marginal (data not published). The latter model has
been indeed used in [GOO03] for contextual multiple alignment.

Let £ = 33 be the state space of the Markov chain M. The transition
probabilities matrix is defined according to the distribution on the set of
amino acids (say p: ¥ — [0,1]), i.e.

P(abc)(bcd) = H(d) Ya,b,c,d € X.

The Markov chain M is clearly irreducible, aperiodic and stationary. We
consider two sequences generated independently by two Markov chains with
transition probability matrix P. Define the averaged contextual score func-
tion S.
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S:ExXxE—R
S((abe), (def)) = i (scoreq (b, e) + scoreq ¢(b, e)+

+ scoreg,.(b,e) + scoreq, (b, e))

where score, (b, ) is the score of substituting b by e with left context a and
right context ¢. To apply Theorem 4 we need to verify assumptions (i)-(iv)
for the Markov chain M and the score function S.

Recall that our contextual scores are defined as log-odds of the observed
and expected mutation rates. Hence the negative drift condition (i) is ful-
filled. Conditions (iii) and (iv) are easy to check for any given contextual
substitution table. The most non-intuitive condition is (ii). Its verification
is also difficult because it requires the spectral analysis of huge matrices.
With standard computational linear algebra packages we have managed to
verify (ii) only in reduced context models. Nevertheless we strongly believe
that it remains true for the full-context situation, too.

For example consider the simple situation when two sequences are generated
as i.i.d. from the distribution p. We know that in this case Theorem 3 holds
but our aim is to verify regularity condition (ii). As a score function S we
take BLOSUMG62 and assume p to be the standard distribution of amino
acids in protein sequences. The spectral radius of ®(#) can be calculated
explicitly:

B(0) = X jes exp(0S(i, 5)) pip;-

The equation ¢(f) = 1 can be numerically solved, yielding 8* = 0.002127144711.
The spectral radius of £3 matrices ®;(0), for i = 1,2 can be calculated in
the same way:

$1(0) = X jree exp(0(S(4, 5) + S(i, k))) pipej g
$2(0) = X jree exp(0(S(i, k) + S (4, k))) pitritie
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We can verify condition (ii) now:
3
o1 (Ze ) = 0.9999967752 < 1

3
b2 <19*> = 0.9999953183 < 1

It is conjectured in [Han03] that condition (ii) is too strong in the case of
symmetric score function.

Conjecture 1. If two independent Markov chains to be aligned are identical
(i.e. P = Q) the condition (ii) is obsolete for Theorem / to hold, provided the
symmetry of the score function S (i.e. S(x,y) = S(y,z) for any z,y € £).

This conjecture, if proven, would imply the EVD approximation for all ‘av-

eraged’ contextual alignment scenarios, in which the used tables are sym-
metric.
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Chapter 6

Experimental Results

We have performed elementary validation of the contextual alignment model.
We have found some interesting phenomena, suggesting that further work
in this direction is worthwhile.

The experiments reported here are based purely on score values. We decided
to assess mainly the influence of the context on the score value. For this
we have used four substitution tables: CONT162, CONT962, CONTg62 and
CONT9(62 (but, as explained above, about one third of the entries had to be
taken from CONT(62). The first table assumed all amino acids to be iden-
tical, hence the table is indeed non-contextual. The experiment consisted
in considering a group of homologous proteins and for each pair of proteins
from the group, comparing the Smith-Waterman optimal score under the
non-contextual table CONT{62 against the optimal score of the contextual
alignement under one of the contextual tables: CONT262, CONT362 and
CONT,(62.

We decided to use the database of Clusters of Orthologous Groups of pro-

teins [TNGO1] (see also the NIH COG page http://www.ncbi.nlm.nih.gov/C0G).
It consists currently of 3307 COGs including 74059 proteins from 43 genomes

of bacteria, archaea and the yeast Saccharomyces cerevisiae. COG database
represents an attempt of a phylogenetic classification of the proteins encoded

in complete genomes. Each COG includes proteins that are thought to be
orthologous, i.e. connected by vertical evolutionary descent.

We restrict our attention to the list of 84 COGs, which contain at least
one protein from each genome. ;From this list 27 COGs (which include as
few paralogs as possible) are selected to our analysis. They can be parti-
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tioned into 2 groups; the first one consists of 12 COGs, which represents a
wide spectrum of functional categories, and the second consists of 15 tRNA
synthetases families.

This experiment had the following goals.

1. Estimation of the statistical significance of contextual alignment vs.
non-contextual one.

2. Observation of the impact the number of context groups has on the
discriminating power of contextual approach.

3. Verification of the accuracy of contextual scores w.r.t. the classifica-
tion of proteins inside COGs and evolutionary relationships between
proteins.

6.1 Statistical significance of contextual vs. non-
contextual alignment

To estimate the statistical significance of our alignments we calculated Z-
value [CAGRHSC99] in the case of global alignment and we adopted the
method of Vingron and Waterman [VWO95] of calculating P-value for local
alignments. The sequences from each COG are pairwise aligned globally and
locally and the statistical significance (Z-value and P-value, respectively) are
computed.

The majority of aligned pairs of proteins gives better statistical significance
measures for contextual approach. A typical outcome is listed in Figure 6.1:
+ indicates that the calculated P-value was 2 orders of magnitude smaller
for contextual alignment when compared with the non-contextual one. Fig-
ure 6.1 contains the results for locally aligned proteins from COGO0030.

6.2 Impact of the number of context groups on the
discriminating power of the contextual align-
ment

The results of such a comparison of local alignments for all proteins of
COGO0089 (Ribosomal proteins—large subunit A, see the NIH COG page
http://www.ncbi.nlm.nih.gov/COG) are presented in Figure 6.2. Observe
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AF1783 ++++ A+ A+ A+ A+ A+ A+ o+
APE0O553 + + + + + + + + + +
aq_1816 + + ++++++++++ 4+ o+

BBO690 + ++ ++ +++++++++++++++++++++ +

BHOO57 + + + + ++++++++++
BS_ksgh + + + + +++++++ A+ A+ +

BU141 + + + +++ + ++++ ++ ++ 4+ + + + + + 4+ +

CC1685 + + + + + + + + 4+ + + + + + + 4+ + + + 4+ + + + + +
Cji71lc + + + + + + + + + + + + +++++ + 4+ ++++
CPnl1059 + + + + + + + + + +++++++ A+

CT354 + + + + + + + + + 4+ 4+t

DR1526 + + + + + + + + + + + + 4+ ++++++++++++++

HIOB49 + + + + + + + 4+ + + + + + + + + + + + + +

HP1431 + + + + + + + + + + + + + + + o+ + 4+ + + +
jhp1322 + + 4+ + + + 4+ + + + + + +++ o+ + + + + +

ksgh + + + + + + ++ 4+ 4+ ++ ++++ O+ o+ + +
L0363 + + + + + 4+ ++++++++ o+
MG463 + + + + ++ + + + ++ + + ++++ +++ + 4+ 4+ + + +

MJ1029 + A+ 4+ +++++++++ ++++ + 4+ 4+ o+ + o+

MLO241 + + + 4+ 4+ ++ ++++++++++++ + 4+ ++++ + +
mll7860 + + + + + + + 4+ + + + + + + + 4+ 4+ + + +

MPN679 + + + + + + + + + + + + + + + + + + + + + + + +
MTH1326 ++ 4+ ++ ++++ ++ o+ + + + + + o+ + +
NMAO902 + + + + + + + + + + + + + + + + 4+ + + + + + +
NMBOB97 + + + + + + + + + + + + + + + + + + + + + + +

PA0592 + + + + + + + 4+ + o+ + +
PAB0253 +4++++H A+ o+

PH1823 ++++++++++++++ 4+ + + + + + +

PM1209 + + + + + + + + + + + + + + 4+ + + + + + +

Figure 6.1: Comparing statistical significance of contextual vs. non-
contextual alignment for COGO0030. + indicates that the P-value for the
corresponging pair of proteins is at least two orders of magnitude smaller
for contextual local alignment than for the non-contextual one. Names of
the proteins are listed in the first column.
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(a) (b) (o)

Figure 6.2: Non-contextual vs. contextual local alignment. The results
are for COGO0089 (Ribosomal proteins — large subunit A). Horizontal and
vertical axis are scores. Neighbor grid points are 100 score units apart. A
point (z,y) is in plot (a) if for a certain pair p, g of proteins from COG0089
the optimal Smith-Waterman score of the local alignment of p with ¢ is
z, under CONT62 substitution table; while the optimal score of the local
contextual alignment of p with ¢ is y, under CONT262. The plots (b) and (c)
are obtained in a similar way, except CONTs62 (CONT9462, respectively)
was used instead of CONT562.

that the distinguishing power increases with the number of context groups.
It is particularly visible in the area of low scores (close to the bottom left
corner of the plot), where the vertical cut through the area occupied by the
alignments’ scores is particularly large. Note that the difference between
the plots (b) and (c) is clearly visible, even though the tables used to align
sequences have one third of entries common.

6.3 Discriminating power of contextual alignment
vs. non-contextual alignment

An interesting phenomenon is observed for 4 tRNA synthetase families,
namely for COGs 0172, 0441, 0442, and 0495. See Figure 6.3. On the
plot for all pairwise local comparisons of sequences from each of these 4
COGs, two separated groups of points are clearly visible. This indicates that
the contextual algorithm subdivides the alignments into subsets, while the
non-contextual alignment score alone does not distinguish these groups, i.e.
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projecting the plot on the z-axis yields a continuous spectrum of score val-
ues, while projecting it on the y-axis yields two (or even three for COG0441)
components.

A detailed analysis leads to an interesting observation that in each case, the
subdivision of scores gives rise to a partition of proteins into two subsets,
say A and B. The group with lower contextual scores contains the scores
of pairs from different subsets (i.e. one from A vs. one from B), while the
group of higher contextual scores contains scores of pairs from the same
subset (i.e. both from A, or both from B). It always turns out that one
of the subsets is much smaller than the other: for COGO0172 it has just
two elements (MJ1077, MTH1122); for COG0442 we have 16 proteins; for
COGO0495 we have 9 proteins. Moreover, in COG0441 one can distinguish
even 3 groups. In that case, the group with the smallest scores corresponds
to alignments of protein APE0117 with all others. A promising fact is that
our partitions are in agreement with known groups of evolutionarily close
proteins inside COGs. This can be verified by comparison with the existing
phylogenetic trees. This readily confirms the accuracy of the contextual
approach.

Plots of Figure 6.3 should be contrasted with plots obtained for unrelated
sequences. Figure 6.4 presents the results. Plot in Figure 6.4(a) contains a
comparison of contextual vs. non-contextual local alignment for 1176 pairs
of distantly related homologs (less than 25% sequence identity). This data
was kindly given to us by Maricel Kann [Ka02]. The plot suggests that there
is more discriminative power for detecting remote homology when contextual
alignment is used instead of the ordinary non-contextual one. Figure 6.4(b)
contains a comparison for 1176 unrelated pairs of proteins. They were ob-
tained from pairs of protein sequences of Figure 6.4(a) by choosing a random
order of these pairs (S1,71), ..., (S1176, T1176)- The i-th new pair (U, V') was
obtained by taking U = S; and V' = Tj;2 (the index i+ 2 was taken modulo
1176). This plot clearly indicates that in this case both methods shrink the
spectrum of possible score values to those near zero. Figure 6.4(c) contains a
comparison for completely random sequences which preserve only the amino
acid frequency of the sequences used in Figure 6.4(a).

We conclude this section with an example of a comparison for the global
alignment. Quite another shape is found on the plot of the non-contextual
score (horizontal axis) vs. contextual score (vertical axis) for all pair-
wise global comparisons of sequences from COGO0575 (CDP diglyceride syn-
thetase). This time the contextual asymmetric table CONT62 was used,
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max_tx=1954 COG0441 . max_ctx=1646 COG0442

COG0172 . COG0495

Figure 6.3: Comparison of local alignment for COGs 0172 (Seryl-tRNA syn-
thetase), 0441 (Threonyl-tRNA synthetase) , 0442 (Prolyl-tRNA synthetase)
and 0495 (Leucyl-tRNA synthetase). For the contextual alignment we used
the table CONT962. Explaination of the plot is that same as in Figure 6.2.
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(a) (b) C©

Figure 6.4: Comparing unrelated sequences. Plot (a) presents the results of
comparing non-contextual (z-axis) with contextual (y-axis) local alignment
for 1176 pairs of remote homologs (less than 25% of sequence identity).
Plot (b) represents a comparison of 1176 pairs of protein sequences which
are unrelated. Plot (c) shows such a comparison for 1176 pairs of random
sequences, each obtained by a random permutation of amino acids in the
pairs of proteins of plot (a). Description of the plots in this Figure is the
same as in Figure 6.2.
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max_ctx=759

min_no=-469 max_no=623

min_ctx=-404

Figure 6.5: Comparison of global alignment for COGO0575 (CDP diglyceride
synthetase). Horizontal and vertical axis are scores. Neighbor grid points
are 100 score units apart. A point (z,y) is in the plot if for a certain pair
p, q of proteins from COGO0575 the optimal Smith-Waterman score of the
global alignment of p with ¢ is z, under CONT{62 substitution table; while
the optimal score of the global contextual alignment of p with ¢ is y, under
CONT62.

see Figure 6.5. Two stripes are clearly visible, indicating that the contex-
tual algorithm subdivides the alignments into two subsets, while the non-
contextual alignment score alone does not distinguish these two groups.

6.4 Phylogenetic trees

Comparison of contextual with non-contextual alignment for building phylo-
genetic trees has been done in Gambin and Slonimski [GS02]. The pairwise
contextual alignment scores were used to phylogenetic reconstruction of evo-
lution of several protein families from COGs. For the same families phylo-
genetic trees were also reconstructed, based on the standard non-contextual
approach. The comparative analysis shows that the use of contextual model
results in a more consistent set of trees. The difference, although small, is
with no exception in favor of the contextual model. The consistency of a
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family of trees is measured by several consensus and agreement methods, as
well as by the inter-tree distance approach.

For the experiment two sets of COGs were used. One set, consisting of 12
gene families of different tRNA synthetases, constituted of strongly function-
ally related families of genes. The other set, consisting of 8 COGs, includes
functionally more diverse groups of genes (DNA polymerases, ribosomal pro-
teins, CDP-diglyceride synthetases). These two sets were selected from the
list of 85 COGs, in which all organisms are present. For each of the gene
family four phylogenetic trees were constructed, depending on the choice of
the method of aligning (contextual vs. non-contextual), as well as depending
on the method of deriving evolutionary distance from the alignment score
(P-value statistics of Vingron and Waterman [VW95] vs. the approach by
Linial et al. [LLTY97)).

Under different methods of measuring dissimilarity of pairs of trees (e.g.
Nearest Neighbor Interchange Distance, or Mazimal Agreement Subtree) it
turns out that the set of trees obtained by the contextual alignment method
forms a more compact set (i.e. the mutual distances are smaller) than the
set obtained by the standard non-contextual alignment method. Moreover
this phenomenon did not depend on choice of the method of deriving the
evolutionary distance.
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Chapter 7

Conclusions and open
problems

We would like to remark that there is no need to restrict the context to
consist of one letter to the left and one letter to the right, only. Indeed,
our algorithms extend without much difficulty to the case with contexts
consisting of k letters on each side, for a fixed k. The algorithms are still of
O(f(|X], k) - mn) complexity. However, the factor f(|X|, k) grows extremely
fast with k, which makes algorithms even for k£ = 2 impractically slow. An
interesting observation is that the local sequence around each amino acid
can be used to approximate the “3 D context” i.e. the local environment in
secondary and tertiary structure of the protein. For this aim the context
consisting only of one pair of letters is sufficient. For example, in §-sheets
only amino acids at positions i + 2 contact the ith one [SS79]. It would be
interesting to adopt our methodology to deal with this situation.

An additional problem, mentioned already above, is that already for k£ = 1
there is hardly enough biological data available to construct the substitution
tables. For k = 2 the situation becomes completely hopeless. Therefore,
based on purely pragmatic reasons, we decided to limit our presentation to
the case k = 1.

Another possible extension is to permit the scores of insertions and dele-
tions to depend on the context, too. It is again well motivated from the
biological point of view. In the case of DNA it is known, that transposons
insert themselves in the places identified by a specific, transposon dependent
sequence of base pairs. Thus, on the level of DNA, transposon caused inser-
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tions are context dependent (cf. [Str95]). To conform to this more general
situation, the overall idea of the algorithms need not be changed, but the
details become more messy. We decided not to present it here because we
can’t imagine determining a plausible contextual indel penalty — given that
even the non-contextual one is not inferred from the data, but rather chosen
ad hoc, based on experience.
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Appendix A

Appendix: Constraint Tables
for an Insertion Block

For the tables in this Appendix we use the following notation (same as in
Figure 2.1).

i k
T
a ¢ ¢ - - - cp UV

First we give for right contexts for 7 and separately for left contexts for k.

|V | a
7,k
Vi ‘ Cr<i<i ‘ Ci<i

Table A.1: Constraints for right contexts for 4.

a ‘ a ‘ Cm
Z?«]
\ ‘ Cick<j ‘ Cick

Table A.2: Constraints for left contexts for k.

Next we give the constraint tables for all possible relationships between the
characters in the alignment (all equalities are explicitly mentioned for each
table).
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(baa) ‘ (bva/) ‘ (bacm) ‘ (b,7a) ‘ (blva/) ‘ (b,acm) ‘ (claa) ‘ (Cl7a,) ‘ (Clacm)

L | Cickej | Cicjar | Cheici | L | L | Cragai| L+ | VI

Chart 1: Constraints for all possible pairs of contexts (no equalities
assumed).

(b,a) | (b,a) | (byem) | (Vya) | (V,d) | (¥scm)
Crej<i | Cickej | Ciar | Creics | L | L

Chart 2: Constraints for the situation b = ¢;.

(b.a) | (ba) | (bewm) | (,a) | (t,d) | (¥, cm)

7 ok
1 ‘Ci<k<j ‘ Ci<j<k‘ Vi ‘ 1 ‘ Vi

Chart 3: Constraints for the situation ¥ = ¢;.

(b’a‘) ‘ (b’a/) ‘ (bacm) ‘ (Claa’) ‘(Claa/) ‘ (Cl,Cm)

N
Crei<j ‘ Cick<j ‘ Cicj<k ‘ Crej<i L ‘ Vj

Chart 4: Constraints for the situation b = b'.

(b,a) | (b,a") | (b,em)
Vil | Cicksy | Cjan

Chart 5: Constraints for the situation b =¥’ = ¢;.

(bya) | (b,d) | (V,a) | (V,a') | (c1,0) | (c1,d)
Cicjer | Cichej | Creicj | L | Cji | L

Chart 6: Constraints for the situation a = ¢,,.

(b,a) ‘ (b,d) ‘ (v, a) ‘ (b, a") ‘ (c1,a) ‘ (c1,a")

k,j i,k
1 ‘ \% ‘ Cr<i<y ‘ L ‘ Crej<i | VY

Chart 7: Constraints for the situation a’ = ¢,,.
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(b.a) | (boem) | (Wa) | (Vrem) | (cr,a) | (e1sem)
Cickej | Cicich | Chcici | L | Cheja

Chart 8: Constraints for the situation a = a’.

(0, a) | (t',a) | (c1,0)
v ‘Ck<i<j ‘ Ci<i

Chart 9: Constraints for the situation a = o’ = ¢,),.

(b, a) | (b,a) | (V.a) | (V,d)
Cicjar ® Cici | Cichej | Cheicj | L

Chart 10: Constraints for the situation b = ¢; and a = ¢,,.

(ba) | (ba) | (t.a) | (¥,d)
Crejai | VIPOV)® | Chaicy | L

Chart 11: Constraints for the situation b = ¢; and a’ = ¢,,.

(b,a) | (byem) | (W.a) | (W, cm)
Crejci ® Cichj | Cijcr | Chaicj | L

Chart 12: Constraints for the situation b = ¢; and a = a’.

(ba) | (,a)
\/g’k@CjQ;

Cr<i<i

Chart 13: Constraints for the situation b = ¢; and a = a’ = ¢,,.

(ba) | (bd) | (Vo) | (¥, a)
Cicjer | Ciche | V7@ VIM | L

Chart 14: Constraints for the situation ¥ = ¢; and a = ¢,,.

66



(b.a) | (b.a') | (t/,a) | (V.a)

F i N
L viP v Y

Chart 15: Constraints for the situation ¥ = ¢; and o’ = ¢,,,.

(b,a) ‘ (b, cm) ‘ (b/7a,) ‘ (b’,Cm)
Cick<j ‘ Ci<j<k‘ vy ‘ v;k

Chart 16: Constraints for the situation b’ = ¢; and a = a’.

(b,a) | (V,a)
FviFe vy

Vo

)

Chart 17: Constraints for the situation ¥’ = ¢; and a = a’ = ¢,,.

(b’ a’) ‘ (bv al) ‘ (Clva) ‘ (Clva/)
Cheicj ® Cicjcr | Cichej | Cjai | L

Chart 18: Constraints for the situation b = b and a = ¢,,.

(b,a) ‘ (baql) ‘ (Cba) ‘ (Clva,)

7.k 7,k
Cr<i<j ‘ Vi ‘ Crej<i |V

Chart 19: Constraints for the situation b =’ and a’ = ¢,),.

(b,a) ‘ (b,('/m) ‘ (Claa) ‘ (Cl,Cm)

2,k
Vj

7
Ni ‘ Cicj<k ‘ Cr<j<i

Chart 20: Constraints for the situation b = ¥’ and a = a’.

(b,a) ‘ (c1,a)
Cicj | Cjai

Chart 21: Constraints for the situation b = ¢ and a = a’ = ¢,,.
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(b,a) ‘ (b,d)
Vil ® Cicr ‘ Cick<j

Chart 22: Constraints for the situation b = ' = ¢; and a = c,,.

(b,a) | (b,a)
Vil [ Vvitev

ok
J

Chart 23: Constraints for the situation b = b = ¢; and d’ = ¢,,.

(b,a) | (bcm)
Ci<j | Cjck

Chart 24: Constraints for the situation b = ¥ = ¢; and a = a’.

(b, a)
T

Chart 25: Constraint for the situation b =4 =c¢; and a = a’ = ¢,,.
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