Modeling Exopeptidase Activity from LC-MS Data
 Proof of Proposition 1

Bogusław Kluge, ${ }^{*}$ Anna Gambin, ${ }^{\dagger}$ and Wojciech Niemiro ${ }^{\ddagger}$

Recall that $(X(t))$ is a homogeneous Markov process with the following intensity of transitions $\left(x \neq x^{\prime}\right)$:

$$
Q\left(x, x^{\prime}\right)= \begin{cases}a_{\star i} & \text { if } x_{-i}^{\prime}=x_{-i}, x_{i}^{\prime}=x_{i}+1 \text { for some } i, \tag{1}\\ a_{r(i, j)} x_{i} & \text { if } x_{-i-j}^{\prime}=x_{-i-j}, x_{i}^{\prime}=x_{i}-1, x_{j}^{\prime}=x_{j}+1 \\ \quad \text { for some } i \rightarrow j, \\ a_{i \dagger} x_{i} & \text { if } x_{-i}^{\prime}=x_{-i}, x_{i}^{\prime}=x_{i}-1 \text { for some } i .\end{cases}
$$

Proposition (Equilibrium distribution). The process $(X(t))$ has the equilibrium (stationary) distribution π given by

$$
\pi(x)=\prod_{i \in \mathcal{V}} \mathrm{e}^{-\lambda_{i}} \frac{\lambda_{i}^{x_{i}}}{x_{i}!},
$$

where the configuration of intensities $\left(\lambda_{i}\right)_{i \in \mathcal{V}}$ is the unique solution to the

[^0]following system of "balance" equations:
$$
\sum_{k \rightarrow i} \lambda_{k} a_{r(k, i)}+a_{\star i}=\lambda_{i}\left(\sum_{i \rightarrow j} a_{r(i, j)}+a_{i \dagger}\right) \quad \text { for every } i \in \mathcal{V}
$$

Proof. We are to show that for every configuration x,

$$
\begin{equation*}
\sum_{x^{\prime} \neq x} \pi(x) Q\left(x, x^{\prime}\right)=\sum_{x^{\prime} \neq x} \pi\left(x^{\prime}\right) Q\left(x^{\prime}, x\right) . \tag{2}
\end{equation*}
$$

Using the formulas for $Q\left(x, x^{\prime}\right)$ it is easy to see that the LHS of (2) is

$$
\begin{gathered}
\sum_{i \rightarrow j} \pi\left(x_{-i-j}\right) \mathrm{e}^{-\lambda_{i}} \frac{\lambda_{i}^{x_{i}}}{x_{i}!} \mathrm{e}^{-\lambda_{j}} \frac{\lambda_{j}^{x_{j}}}{x_{j}!} a_{r(i, j)} x_{i} \\
+\sum_{i} \pi\left(x_{-i}\right) \mathrm{e}^{-\lambda_{i}} \frac{\lambda_{i}^{x_{i}}}{x_{i}!} a_{i \dagger} x_{i} \\
\quad+\sum_{k} \pi\left(x_{-k}\right) \mathrm{e}^{-\lambda_{k}} \frac{\lambda_{k}^{x_{k}}}{x_{k}!} a_{\star k} .
\end{gathered}
$$

Putting the first and second term together we arrive at

$$
\begin{aligned}
& \text { LHS }=\sum_{i} \pi\left(x_{-i}\right) \mathrm{e}^{-\lambda_{i}} \frac{\lambda_{i}^{x_{i}-1}}{\left(x_{i}-1\right)!}\left(\sum_{j: i \rightarrow j} a_{r(i, j)}+a_{i \dagger}\right) \lambda_{i} \\
& +\pi(x) \sum_{k} a_{\star k} .
\end{aligned}
$$

Similarly, the RHS of (2) is

$$
\begin{aligned}
& \sum_{k \rightarrow i} \pi\left(x_{-k-i}\right) \mathrm{e}^{-\lambda_{k}} \frac{\lambda_{k}^{x_{k}+1}}{\left(x_{k}+1\right)!} \mathrm{e}^{-\lambda_{i}} \frac{\lambda_{i}^{x_{i}-1}}{\left(x_{i}-1\right)!} a_{r(k, i)}\left(x_{k}+1\right) \\
& \quad+\sum_{i} \pi\left(x_{-i}\right) \mathrm{e}^{-\lambda_{i}} \frac{\lambda_{i}^{x_{i}-1}}{\left(x_{i}-1\right)!} a_{\star i} \\
& \quad+\sum_{j} \pi\left(x_{-j}\right) \mathrm{e}^{-\lambda_{j}} \frac{\lambda_{j}^{x_{j}+1}}{\left(x_{j}+1\right)!} a_{j \dagger}\left(x_{j}+1\right) .
\end{aligned}
$$

Notice that the first term corresponds to transitions from x^{\prime} to x with $x_{k}^{\prime}=$ $x_{k}+1$ and $x_{i}^{\prime}=x_{i}-1$. In the second term we have transitions with $x_{i}^{\prime}=x_{i}-1$ and in the third - those with $x_{j}^{\prime}=x_{j}+1$. Analogously as when computing the LHS we obtain

$$
\begin{aligned}
& \text { RHS }=\sum_{i} \pi\left(x_{-i}\right) \mathrm{e}^{-\lambda_{i}} \frac{\lambda_{i}^{x_{i}-1}}{\left(x_{i}-1\right)!}\left(\sum_{k: k \rightarrow i} a_{r(k, i)} \lambda_{k}+a_{\star i}\right) \\
& +\pi(x) \sum_{j} \lambda_{j} a_{j \dagger} .
\end{aligned}
$$

The balance equations imply that $\mathrm{LHS}=$ RHS and the proof is complete.

[^0]: *Institute of Informatics, University of Warsaw, Warsaw, Poland, bogklug@mimuw.edu.pl
 ${ }^{\dagger}$ Institute of Informatics, University of Warsaw, Warsaw, Poland, aniag@mimuw.edu.pl
 ${ }^{\ddagger}$ Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland and Institute of Applied Mathematics, University of Warsaw, Warsaw, Poland, wniemiro@gmail.com

