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1 Computing thresholds for motif occurences

For each motif M , all |M |-subwords w of a sequence are scored with the function

LM (w) = log
P (w|M)
P (w|B)

where P (w|M) is the probability of observing w given the motif model (drawn from the frequency matrix)
and P (w|B) is the probability of observing w given the background model (estimated from the sequence).
All subwords w satisfying LM (w) > tM are classified as M -occurrences.

There are two standard approaches to the choice of the threshold tM [1]. The first one aims at restricting
the number of false positive motif occurrences. For assumed type I error level α1, tM is chosen to satisfy
P (LM (w) > tM |B) = α1. Its disadvantage is poor control on the classification of true M -occurrences.

The second approach (setting tM satisfying P (LM (w) < tM |M) = α2 for assumed type II error level α2)
restricts the number of false negatives. Unfortunately, it leads to the loss of control on the number of false
positives, and consequently to significant disparity in the number of predicted instances of strong and weak
motifs (i.e. motifs easily and hardly discriminated from the background).

As it is explained in the main text, our method of CRM identification takes into account both positive
and negative signals from the promoter sequence. Thus the control of both error types in the motif prediction
has to be balanced, in the sense that the number of false positives should be of the order of the number of
false negatives. Following the approach proposed by [1] we set the threshold tM satisfying the equation

P (LM (w) < tM |M) = 1000 · P (LM (w) > tM |B)

The constant 1000 is chosen due to the fact that the average number of binding sites of a motif is three orders
of magnitude lower than the number of all positions (see e.g. the considerations of [2]).

The problem in computing the threshold tM lies in finding the distributions of LM under the background
and the motif model.

Given motif M with a Position Weight Matrix (Mi(x))1≤i≤|M |
x∈{A,C,G,T} the scoring function LM decomposes

into the sum of respective PWM coefficients:

LM (x1 . . . x|M |) =
|M |∑
i=1

Mi(xi)

Let Pi(l|B) denote the probability of observing under the background model some word x1 . . . x|M |
satisfying

∑i
j=1 Mj(xj) = l. We have

P0(l|B) =

{
1 for l = 0
0 otherwise

and for i > 0
Pi(l|M) =

∑
x∈{A,C,G,T}

Pi−1(l −Mi(x))P (x|B)

Similarly, for Pi(l|M) denoting the probability of observing under the motif model some word x1 . . . x|M |

satisfying
∑i

j=1 Mj(xj) = l, we have

P0(l|M) =

{
1 for l = 0
0 otherwise
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and for i > 0
Pi(l|M) =

∑
x∈{A,C,G,T}

Pi−1(l −Mi(x))P (x|M(i))

where P (x|M(i)) is the probability of observing x on i-th position under the motif model.
Finally, the distributions of the score LM under the background and under the motif model are given by

the probabilities P|M |(l|B) and P|M |(l|M), respectively.
Unfortunately, a dynamic programming algorithm computing score distributions based on the above

equations has time complexity O(4|M |). Therefore we approximate the value of the threshold tM with
satisfying for our purposes precision p = (lmax−lmin)10−3, where lmax and lmin are maximal and minimal LM

values, respectively. It is done through rounding the coefficients to closest multiples of p
|M | and, consequently,

restricting the set of possible l-values. In this way the time complexity is reduced to O( |M |2
p ).

2 Impact of window size and step on training quality

In order to verify whether the choice of window size has an impact on the prediction quality, we have evaluated
our method prdictions quality on the training set using different window and step sizes. Since the window
size should be greater than a size of a single motif and at the same time smaller than the size of the enhancer,
we are effectively limited to a range between 20 and 200bp. When it comes to the step size, it should be
smaller than the window size and it is very convenient to choose such a step size, that the window size is
divisible by the step. For this reason, we have chosen the window sizes (W ) equal to 24, 36, 48, 96, 144 or
196, and the step size of W/2, W/3 and W/4 for each W . We have repeated the training procedure for all
these values of W and J and calculated the prediction quality, i.e. the fraction of true enhancers overlapping
with one of the top five predictions, and and the average overlap of the predictions with true enhancers. The
reults are plotted in the following figures. As we can see, the prediction quality is slightly increasing with
the increase of the window size, but the average overlap starts decreasing above the window size of 100. The
step does not seem to have a large impact on the measured quantities, so we have chosen J = W/2 which
minimizes the cost of computations.

a) b)

Figure 1: Prediction quality (a) and overlap (b) as functions of window(W) and step(J) size.
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3 Muscle specific CRMs in Mouse and Human

Table 1: Prediction quality of muscle specific CRMs in Mouse
mouse homolog from human homolog from rat
gene signif. ranking overlap signif. ranking overlap
Ckm 0.27 13-14 0.78 0.11 10 0.68
Myh7 0.01 1-3 0.49 0.01 1-4 0.65
Myog 0.01 1 0.41 0.01 1-3 0.40
Tnnc1 0.01 1-3 0.50 0.01 1 0.65
Myf6 0.01 1 0.38 0.01 1 0.37
Myh6 0.01 1-5 0.51 0.02 3-5 0.72

Chrnb1 0.95 12-13 0.03 0.08 6-9 0.63
Chrng 0.01 1-6 0.36 0.03 2 0.45
Chrnd 0.51 63-68 0.49 — — 0.00
Acta1 0.03 4 0.90 0.01 1-4 0.62
Chrne 0.01 1-3 0.78 0.01 1-8 0.85
Chrna1 0.89 36-39 0.47 0.26 10-11 0.22

Table 2: Prediction quality of muscle specific CRMs in Human
human homolog from mouse homolog from rat

gene and crm signif. ranking overlap signif. ranking overlap
DES crm1 0.27 14-15 0.63 0.32 12 0.34
DES crm2 0.03 3 0.49 0.06 5 0.56

MYH7 0.03 3-4 0.73 0.18 21-23 0.56
MYOG 0.19 2 0.41 0.22 3 0.59
ACTC1 0.10 4 0.88 0.01 1 0.82
ACTA1 0.01 1-4 0.53 0.01 1-2 0.53
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4 Importance of rarity score

In Table 3, we show the comparispon betwwen the raw and rarity-based rankings. Each line in the table
corresponds to a pair of sequences in the training set. The left column contains the name of a corresponding
gene. For each CRM there are two pairs of sequences corresponding to different homologues. The numbers
in the second and third column are the rankings obtained by the true CRMs using the rarity score (column
2) or the raw alignment score (column 3). The lower the ranking, the better. If the ranking of the true
CRM is not larger than 5, the CRM is considered to be found which is indicated by using bold face. If the
true CRM was not reported in the ranking at all , we put ∞ instead of a number. It should be noted that
the parameters β, γ were optimized for both rankings separately not to give any of the methods an unfair
advantage.

Table 3: Comparison between raw and rarity score based rankings
Ranking Ranking Ranking Ranking

Gene using using Gene using using
rarity raw score rarity raw score

ENSRNOG00000003777 1 35 ENSG00000175084 12 14
28 ∞ 5 24

ENSG00000175084 14 13 ENSG00000197616 3 10
3 19 21 ∞

ENSMUSG00000030399 13 14 ENSRNOG00000004878 1 4
10 24 1 2

ENSMUSG00000053093 1 3 ENSMUSG00000026459 1 5
1 1 1 2

ENSMUSG00000021909 1 8 ENSG00000122180 2 6
1 1 3 1

ENSRNOG00000017786 1 2 ENSRNOG00000025757 1 6
1 4 6 15

ENSRNOG00000017226 5 11 ENSRNOG00000019602 3 30
18 38 4 5

ENSG00000159251 1 5 ENSMUSG00000035923 1 4
4 5 1 3

ENSMUSG00000040752 1 6 ENSMUSG00000041189 6 13
3 14 12 16

ENSMUSG00000026253 1 ∞ ENSG00000143632 1 8
2 18 1 4

ENSMUSG00000026251 ∞ 11 ENSMUSG00000031972 4 2
63 32 1 7

ENSMUSG00000014609 1 36 ENSMUSG00000027107 36 15
1 12 10 28
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5 Predictions of Billboard and EEL methods on the liver dataset

For reference, in Figure 2 we present top predictions of the Billboard and EEL methods on the liver dataset.
In all plots, the x-axis represents the sequence and the bars correspond to different predictions by two methods
against two organisms (Rat and Mouse). The highest, purple bar corresponds to the location of the reference
enhancer. The height of the other bars corresponds to the prediction score relative to the maximum score
(in case of billboard it is 1-rarity). The case of the ENSG00000129965 gene is special since there are two
homologs, so there are more predictions than in other cases.

Figure 2: Top predictions of the EEL and Billboard methods on the liver dataset.
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To summarize the results of liver-specific CRM predictions, we reproduce here an extended version of
Table 1 from the text. For each gene name in column 1, one row shows quality of CRM prediction for one
homolog (described in column 2). Quality of the most significant prediction which overlaps the experimentally
verified CRM is presented by three attributes: rarity (see Section on Assessing the rarity of CRMs), position
in ranking w.r.t. rarity (for ex aequo positions we show the range), and overlap.

Human gene homolog species rarity ranking overlap
ALDOB Mouse 0.95 106-111 0.28

Rat 0.90 83 0.97
IGF1 Mouse 0.04 1-2 0.29

Rat 0.01 1 0.42
PAH Mouse 0.98 98-101 0.64

Rat 0.94 79-89 0.06
PROC Mouse 0.01 1-2 0.64

Rat 0.01 1-2 0.64
CYP7A1 Mouse 0.88 56-58 0.38

Rat 0.84 62-63 0.83
G6PC Mouse 0.03 1 0.49

Rat 0.12 4 0.82
INS Mouse 0.48 23 0.29

Mouse 0.16 4 0.29
Rat 0.21 4 0.29
Rat 0.07 3-5 0.53

Table 4: Summary of liver-specific CRM predictions
.
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6 ROC curves for Muscle and Liver datasets

6.1 Muscle dataset

ROC curve showing the performance of our method on the training dataset (muscle). For comparison we
included the result of the ModuleFinder method also trained on this data as published by Philippakis et al.
(2005)

6.2 Liver dataset

ROC curve showing the performance of our method on the liver dataset. For comparison we included the
result of the EEL method using the same set of motifs.
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7 Prediction summary for different Drosophila species (extended
Table 2)

The table reports quality of the most significant prediction of each CRM in the gene eve in Drosophila
melanogaster obtained by our method with each of other considered Drosophila species. The quality attributes
are the same as in Table 4.

homolog Drosophila erecta Drosophila ananassae Drosophila pseudoobscura Drosophila mojavensis
CRM rarity rank overlap rarity rank overlap rarity rank overlap rarity rank overlap
stripe3+7 0.22 8-11 0.54 0.06 6 0.62 0.01 1-3 0.54 0.04 7-8 0.54
stripe2 0.22 8-11 0.10 0.30 15-16 0.20 0.03 6-7 0.22 0.02 3-4 0.10
stripe4 6 0.12 4 0.21 0.10 8 0.88 0.02 4-5 0.53 0.03 5-6 0.65
stripe1 0.19 7 0.21 0.03 3-4 0.30 0.01 1-3 0.46 0.04 7-8 0.13
stripe5 0.23 12-13 0.27 0.30 15-16 0.26 0.61 29 0.21 0.34 23-24 0.09
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8 Performance measures for Muscle and Drosophila dataset

Method top ranked found SN PPV
our 1 14 0.58 0.58
our 2 15 0.63 0.31
our 3 18 0.75 0.25
our 4 19 0.79 0.20
our 5 20 0.83 0.17
our 6 21 0.88 0.15
our 10 23 0.96 0.1
eel 1 1 0.04 0.04
eel 2 2 0.25 0.13
eel 3 10 0.42 0.14
eel 4 11 0.46 0.11
eel 5 12 0.50 0.1
eel 6 13 0.54 0.09
eel 9 14 0.58 0.06

Table 5: Performance measures for Muscle dataset

Method Top ranked found SN PPV
our 5 2 0.4 0.4
our 6 3 0.6 0.5
our 8 4 0.8 0.5
eel 3 1 0.2 0.33
eel 10 2 0.4 0.2

eel (specific) 5 5 1.0 0.8

Table 6: Performance measures for Drosophila dataset
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9 Computational complexity

The algorithm of the billbard method might be decomposed into several stages. We will briefly outline their
asymptotic complexity for a single analysis of two sequences of length N below:

1) Reading input sequences This step is linear with respect to the total length of sequences. We have
a constant number of sequences of length N , so the complexity of this step is O(N).

2) Annotating the sequences with motif occurences We need to scan all sequences with all motifs
from the database. If we assume that the length of motifs is bounded by a constant (in our case it
is always < 30bp with the median length ∼ 10), the number of steps is linear with respect to both
sequence length N and number of motifs M givinng time complexity of O(N ·M).

3) Building the raw score matrix (V ) We are using a simple dynamic programming algorithm (outlined
in Methods section), which computes simple set operations on every sequence window of a fixed size.
The number of windows is N/J for each sequence, so we need to calculate (N

J )2 entries in the matrix.
Each computation requires at most M basic operations, so the time complexity is O((N

J )2 ·M)

4) Calculating the rarity score To calculate rarity, we repeat step 3) for a fixed number of random
sequences (O((N

J )2 ·M)) and then for each of the N/J windows, we calculate its maximum score value
with the ranking of the randomized scores. This does not increase the asymptotic complexity, but it
should be noted that the hidden constant is quite large (we use 100 random sequences).

In summary, the total time complexity of the algorithm is O((N
J )2 ·M), and if we consider the number

of motifs in the database as constant, we obtain the complexity of O((N
J )2. It should be noted that this

cost includes a substantial multiplicative constant coming from the motif database size and the number of
random sequences.
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