
Efficient and error-tolerant

sequencing read mapping

– supplementary materials

Piotr Jaroszyński, Norbert Dojer

1 Background

1.1 Rank operation

Definition 1.1 Given a string S1..n, Rankc(S, i) is equal to the number of oc-
currences of the symbol c in the substring S1..i.

1.2 Wavelet trees

Wavelet trees introduced in [6] allow to reduce the Rank operation on a sequence
consisting of symbols from an arbitrary finite alphabet Σ to Rank operations
on bit vectors. This is useful because, as we will see later, there exist efficient
implementations of the Rank operation on bit vectors.

ATGCTAGTACATGACG

0110101100011001

ACAACAAC

01001001

Σ = {A} Σ = {C}

RankC(5) = 2

Rank{A,C}(10) = 5

TGTGTTGG

10101100

Σ = {G} Σ = {T}

Σ = {A,C,G, T}

Σ = {A,C} Σ = {G,T}

Figure 1: An example wavelet tree built for text “ATGCTAGTACATGACG”.
And the two-step process of calculating RankC(10) on that text.

1

Given a string S1..n from alphabet Σ, the wavelet tree of that text is a binary
tree on the alphabet Σ where each node V represents a subset of the alphabet
ΣV and its children Vl and Vr represent exclusive not empty subsets of ΣV that
sum up to ΣV . The root node represents the whole alphabet and the leaves
represent single symbols. Furthermore for each internal node V a subsequence
SV of S consisting only of symbols from ΣV is considered, but only a bit vector
of length |SV | is actually stored: BV [i] = 0 iff SV [i] ∈ ΣVl

and 1 otherwise. See
Figure 1 for an example.

The algorithm to calculate Rankc(S, i) works as follows. For each node
V that is encountered i is updated: i = Rank0(BV , i) iff c ∈ Vl and i =
Rank1(BV , i) otherwise. If c ∈ Vl then the algorithm continues to node Vl and
Vr otherwise. It starts at the root node and terminates with the result in i when
a leaf node is encountered.

1.3 Suffix Array

Definition 1.2 Given a text T1..n, its suffix array SA is a sequence of integers
such that suffixes TSA[i]..n for i = 1..n are in lexicographical order.

1.4 Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) [2] is a reversible permutation of text.
It was first introduced as an aid in compression.

Definition 1.3 Given a text T1..n, where Tn = #, and its suffix array SA1..n

the Burrows-Wheeler Transform is defined as BWTi = TSA[i]−1, where it is
assumed that T0 = Tn.

That is, BWT is a concatenation of the symbols preceding each suffix from
the suffix array SA: BWT = TSA[1]−1TSA[2]−1..TSA[n]−1.

A good conceptual way of thinking about the BWT is the following. Con-
sider an array BA consisting of all the possible cyclic shifts of T (i.e. all strings
of the form Ti..nT1..i−1) sorted in lexicographical order. There is a close relation
between the array BA and the suffix array SA as each row of BA has a different
prefix of the form Ti..n each ending with the symbol #, which is smaller than
any other symbol. Hence the order of the rows in BA is the same as the order
of corresponding suffixes in SA. See Figure 2.

Let F be the first column of BA and L be the last column of BA. F
has a very simple structure as it consists of all the symbols from T sorted in
lexicographical order. And given the cyclic form of the rows of BA, L consists
of symbols preceding all the suffixes of T and thus L = BWT .

Moreover there exists a mapping between the column L and F , called the LF-
mapping [2]. Consider the order of occurrences of symbol c in F : it depends only
upon what they are followed by in T . Now consider the order of occurrences of
c in L: given the cyclic nature of BA it again depends only upon what follows
them in T . And hence for each symbol c from T , i-th occurrence of c in L

2

abracadabra babda#
bracadabra babda#a
racadabra babda#ab
acadabra babda#abr
cadabra babda#abra
adabra babda#abrac
dabra babda#abraca
abra babda#abracad
bra babda#abracada
ra babda#abracadab
a babda#abracadabr
babda#abracadabra

babda#abracadabra
abda#abracadabra b
bda#abracadabra ba
da#abracadabra bab
a#abracadabra babd
#abracadabra babda

18 #abracadabra babda
12 babda#abracadabra
17 a#abracadabra babd
11 a babda#abracadabr
14 abda#abracadabra b
8 abra babda#abracad
1 abracadabra babda#
4 acadabra babda#abr
6 adabra babda#abrac
13 babda#abracadabra
15 bda#abracadabra ba
9 bra babda#abracada
2 bracadabra babda#a
5 cadabra babda#abra
16 da#abracadabra bab
7 dabra babda#abraca
10 ra babda#abracadab
3 racadabra babda#ab

sort

Array BA

Figure 2: Construction of the BWT array BA. First column F in blue and last
column L = BWT in green. Text following suffixes is gray and corresponding
values from the suffix array are orange.

corresponds to the i-th occurrence of c in F . Correspondence here means that
both occurrences come from the same position in the original text T.

Definition 1.4 LF (i) is the position in F of the corresponding occurrence of
symbol Li.

Let C(c) be the number of symbols lexicographically smaller than c in T .
And let Occ(c, i) = Rankc(L, i). Given these two functions we can calculate LF :
LF (i) = C(Li) +Occ(Li, i). C(Li) is the beginning of occurrences of symbol Li

in F and Occ(Li, i) gets us to the specific occurrence Li.
Given how BA was constructed we know that Fi directly follows Li in T .

Hence given Li and its corresponding occurrence FLF (i) we know that LLF (i)

directly precedes Li in T . This allows us to go backwards in T by performing
the LF -mapping.

Given that Tn = # and that # is the smallest symbol we know that F1 =
Tn = # and hence L1 = Tn−1.

Combining these two properties we can compute any Ti for i = 1..n− 1 from
BWT = L: Ti = BWT [LFn−i−1(1)] and thus reverse the BWT .

3

#abracadabra babda
babda#abracadabra

a#abracadabra babd
a babda#abracadabr
abda#abracadabra b
abra babda#abracad
abracadabra babda#
acadabra babda#abr
adabra babda#abrac
babda#abracadabra
bda#abracadabra ba
bra babda#abracada
bracadabra babda#a
cadabra babda#abra
da#abracadabra bab
dabra babda#abraca
ra babda#abracadab
racadabra babda#ab

#abracadabra babda
babda#abracadabra

a#abracadabra babd
a babda#abracadabr
abda#abracadabra b
abra babda#abracad
abracadabra babda#
acadabra babda#abr
adabra babda#abrac
babda#abracadabra
bda#abracadabra ba
bra babda#abracada
bracadabra babda#a
cadabra babda#abra
da#abracadabra bab
dabra babda#abraca
ra babda#abracadab
racadabra babda#ab

#abracadabra babda
babda#abracadabra

a#abracadabra babd
a babda#abracadabr
abda#abracadabra b
abra babda#abracad
abracadabra babda#
acadabra babda#abr
adabra babda#abrac
babda#abracadabra
bda#abracadabra ba
bra babda#abracada
bracadabra babda#a
cadabra babda#abra
da#abracadabra bab
dabra babda#abraca
ra babda#abracadab
racadabra babda#ab

”b” ”ab” ”dab”

Figure 3: Searching for “dab” in “abracadabra babda#”. Green symbols are at
some point part of the match and in the F column they represent the currently
matched range. Red symbols are the occurrences of the symbol considered at
each step that do not end up in the match. Arrows show the LF -mapping.

1.4.1 Searching

It is also possible to search for occurrences of query Q1..m in text T1..n that we
constructed BWT from. The method was first introduced in [4] and was called
the backward search. The name comes from the fact that the search starts by
finding occurrences of the last symbol of the query first and works backwards
to its beginning.

The algorithm performs m steps starting with i = m and going down to
i = 1. At each step it maintains a range [spi, epi] (inclusive) of rows from the
BWT array BA prefixed by Pi..m.

For i = m the step is easy as we have already introduced function C, which
does exactly what we want:

spm = C(Qm) + 1

epm = C(Qm + 1)

Where Qm + 1 is the next symbol after Qm in lexicographical order.

4

Following steps are a bit more involved:

spi = C(Qi) +Occ(Qi, spi+1 − 1) + 1

epi = C(Qi) +Occ(Qi, epi+1)

If at any point epi becomes smaller than spi then we know that Qi..m does
not occur in the text T . Otherwise the size of the resulting range is the number
of occurrences - i.e. epi − spi + 1.

This relation is the easiest to understand when looking at Figure 3. Consider
the step between ”b” and ”ab”. We have the range representing matches for ”a”
and we want to transform it to a range matching ”ab”. Given each occurrence
Fb1..k of ”b” in F we know that the only candidates that can match ”ab” start at
Lb1..k as they directly precede Fb1..k . Knowing that and the fact that occurrences
of the same symbol in F and L preserve order we can find the new range by
counting ”a”s that occur in L before Lb1 and up to Lbk (this is what the Occ
function does) and take that subrange of the range representing matches of ”a”
(calculated with function C) .

2 Implementation

2.1 Bit vectors

The biggest and most used bit vectors in the implementation are roughly of the
size of the reference genome. As shown in [5] the best implementation for long
bit vectors is a very simple single level caching one. The description follows.

The bits are stored explicitly as an array of 32-bit or 64-bit unsigned integers.
In addition there is a second array that stores precomputed results of the Rank
operation for every CacheEverybv bit. The results are stored as 32-bit unsigned
integers limiting the size of the bit vector to 232− 1, which is just slightly more
than the size of the human genome.

Having the precomputed results, calculating the rank for any position is easy:
get the closest precomputed value and then count rest of the bits linearly. The
counting itself uses precomputation as well: the number of bits in every 16-bit
sequence (this is a slight change - the implementation described in the paper
used 8-bit sequences) is stored in an array at the position which the bit sequence
represents as an unsigned integer (e.g. bitcount[1234] =bitcount[1024 + 128 +
64 + 16 + 2] =bitcount[0000010011010010b] = 5). This counting is represented
by the bitcount function, which splits the BaseSize bits into 16-bits chunks first
and adds up the partial bitcounts. The pseudo-code is showed as Algorithm 2.1
and an example is presented in Figure 4.

2.2 Wavelet tree

The implementation of the wavelet tree is simplified thanks to the small DNA
alphabet. For the text of length n there is one bit vector of length n as the root
node. And two bit vectors for {A,C} and {G,T} nodes that together are also

5

Algorithm 2.1 Pseudo-code for the Rank operation on a bit vector

1: function Rank1(k)
2: r ←precomputed[k/CacheEverybv] . Get the closest precomputed value
3: first ← k − k mod CacheEverybv . Position of the first bit that needs

to be counted directly
4: for b← first/BaseSize, k/BaseSize do . Loop over the bits that can

be counted fully in BaseSize chunks
5: r ← r+bitcount(bits[b])
6: end for
7: r ← r+bitcount first(bits[k/BaseSize], k mod BaseSize) . Add the first
k mod BaseSize bits from the last chunk

8: end function

00011010 11011011  10100011  10111} 101

precomputed full partial

 Rank1(29)= 9 + 4 + 5 = 18

Figure 4: Calculating Rank1(29) on a bit vector where BaseSize is 8 and
CacheEvery is 16. Rank1(16) is precomputed, next BaseSize bits can be counted
directly and to count the last 5 bits the last 3 bits have to be masked off first.

Parameters
n Number of bits
BaseSize Size of the unsigned integers used to store the bits - 32bit or 64bit
CacheEvery Every how many bits should a precomputed value be stored
CacheSize Size of the cached value - 32 bits

Properties
Size n(1+CacheSizebv/CacheEverybv)
Time to Rank O(CacheEverybv)

Table 1: Parameteres and properties of a bit vector.
The O(CacheEverybv) time indicates a linear space-time trade-off. Making the
cache twice as dense makes the Rank operation roughly twice as fast. BaseSize
does have an effect as well - at least using 64-bit integers on a 64-bit processor
is faster than using 32-bit integers.

of length n. Figure 1 is an example of such a tree. The pseudo-code for Rank
is presented as Algorithm 2.2.

6

Algorithm 2.2 Pseudo-code for the Rank operation on a wavelet tree

1: function Rankc(k) . Broot, BAC and BGT are the bit vectors from the
nodes

2: if c ∈ {A,C} then
3: r ←Rank0(Broot, k)
4: if c = A then
5: r ←Rank0(BAC , r)
6: else
7: r ←Rank1(BAC , r)
8: end if
9: else

10: r ←Rank1(Broot, k)
11: if c = G then
12: r ←Rank0(BGT , r)
13: else
14: r ←Rank1(BGT , r)
15: end if
16: end if
17: return r
18: end function

Parameters
n Length of the text
CacheEverybv See bit vector
CacheSizebv See bit vector

Properties
Size 2 · n(1+CacheSize/CacheEvery)
Time to Rank O(2·CacheEvery)

Table 2: Parameters and properties of a wavelet tree

2.3 Index

The index implemented in Bmap is based on SSA. It was chosen after analysing
results described in [7] and [3]. Also preliminary tests were implemented that
leveraged the implementations available on the Pizza & Chili site [1] referenced
by [3]. The idea is to build a BWT from the reference genome and store it as a
wavelet tree.

2.3.1 Find* and Count

To implement all these operations only the wavelet tree is necessary. The
pseudo-code for Find and Count is presented as Algorithm 2.3.1. FindSuf-
fixes instead of returning a single (sp, ep) range returns an array of them as

7

calculated in each step. FindContinue on the other hand skips the initialization
of sp and ep and some of the iterations of the loop.

Algorithm 2.3 Pseudo-code for Find and Count

1: function Find(Q1..m)
2: sp← C(Qm)
3: ep← C(Qm + 1)− 1
4: for i← m− 1, 1 do
5: sp = C(Qi) +Occ(Qi, sp− 1) + 1
6: ep = C(Qi) +Occ(Qi, ep)
7: if ep > sp then
8: break . No matches, jump out
9: end if

10: end for
11: return (sp, ep) . The opaque result is just a range in the BWT array
12: end function
13: function Count(R)
14: if Rsp > Rep then
15: return 0
16: else
17: return Rep −Rsp + 1
18: end if
19: end function

2.3.2 Locate

As mentioned earlier Find returns a (sp, ep) range from BWT. To get the corre-
sponding positions in text each of the BWT positions has to be converted. The
inefficient way to do this would be to recursively use the LF -mapping unless
it gets to the special character # and count the number of mappings that had
to be done to get there. That approach would be linear in time with respect
to the text size though. To make it constant in time a simple caching is added
where for every CacheEverybwt text position the mapping from the correspond-
ing BWT position to that text position is saved. It is done in this way because
LF -mapping is mapping BWT positions that correspond to consecutive text
positions and hence it guarantees that no more than CacheEverybwt mappings
have to be done before finding a position that has a cached value. To implement
it an additional bit vector is necessary indicating which bwt positions are cached
and an array to save the actual mappings.

2.3.3 Extract

Extract is similar to Locate in that it also has a linear implementation that
can be made constant with caching. To extract text from [begin, end) range, it

8

Algorithm 2.4 Pseudo-code for Locate

1: function Locate(bwt)
2: dist← 0
3: while not Bcached[bwt] do . Bcached is a bit vector indicating which

positions are cached
4: bwt← LF (bwt)
5: dist← dist+ 1
6: end while
7: return cached[Rank1(Bcached, bwt)] + dist . Get

the cached position and add the number of mappings that had to be done
to get the text position

8: end function

could start at BWT [1] (which corresponds to the last symbol of the text) and
apply the LF -mapping until it gets to the end position and then for the next
end− start steps extract the symbols that LF maps to.

To make the algorithm constant in time the bwt position of every CacheEverytext
is saved. Each entry is 32bit. The pseudo-code is in Algorithm 2.5.

Algorithm 2.5 Pseudo-code for Extract

1: function Extract(begin, end)
2: p← cache[dend/CacheEverytexte] . Get the closest cached position

after end
3: dist← end− end mod CacheEverytext
4: while dist > 0 do . LF -map to the end position
5: p← LF (p)
6: end while
7: dist← end− begin
8: result = ε
9: while dist > 0 do . LF -map and extract next begin− end characters

10: result = BWT [p] + result . Prepend current character to the result
11: p← LF (p)
12: end while
13: return result
14: end function

2.3.4 Embedding text

A different approach is to embed the text in the index. That makes the Extract
operation trivial. In case of DNA each symbol can be stored in 2 bits (as there
are only 4 possible nucleotides). That means that embedding the text takes
as much space as adding the cache with CacheEverytext = 16. As the trivial
Extract is a lot faster than the one with caching it does not make sense to use
CacheEverytext smaller or equal to 16.

9

2.4 Summary

There are two index types: SSA and SSAT. The only difference is how the
Extract option is implemented - whether it uses caching (SSA) or embedding
(SSAT). Moreover, for each index type there are a few parameters controlling
the balance between memory usage and execution time. We list them in Table
3.

Parameters
n Length of the text
CacheEverybv How dense is the caching in bitvectors
CacheSizebv 32-bit
CacheEverybwt How dense is the caching of bwt
CacheSizebwt 32-bit
CacheEverytext How dense is the caching of text (SSA only)
CacheSizetext 32-bit

Table 3: Parameters of the SSA and SSAT index

All the combinations of index type and parameter settings result in different
memory usage/execution time trade-offs. The size of the index depending upon
the parameters is presented in Table 4.

Size in bits SSA SSAT
Wavelet tree 2 · n(1+CS/CEbv)
Locate n(1+CS/CEbv+CS/CEbwt)
Extract n(CS/CEtext) 2n

Total 3n+n(3CS/CEbv+CS/CEbwt+CS/CEtext) 5n+n(3CS/CEbv+CS/CEbwt)

Table 4: Size of the SSA and SSAT index depending upon parameters

Four different indexes have been chosen for a speed/size comparison. The
parameters are shown in Table 5. They were chosen so that SSA and SSAT are
compared with size similar to what bwa uses by default - 2.4 GB. In addition
both a smaller SSA and a bigger SSAT index was benchmarked.

Name Size Type Parameters
bmapS 1.8GB SSA CEbv = 128, CEbwt = 64, CEtext = 64
bmapB 2.4GB SSA CEbv = 256, CEbwt = 16, CEtext = 32
bmapT 2.4GB SSAT CEbv = 256, CEbwt = 32
bmapL 2.9GB SSAT CEbv = 128, CEbwt = 16

Table 5: Parameters of the indexes chosen for comparison

10

3 User manual

Bmap is a C++ project which can be built with CMake.

3.1 Required dependencies

• boost

• gtest - http://code.google.com/p/googletest/downloads/list

• bamtools - https://github.com/pezmaster31/bamtools

• libdivsufsort - http://code.google.com/p/libdivsufsort/downloads/
list

3.2 Usage

3.2.1 Buildng an index

Usage: indexer type rebwt fasta-file bwt-file index-file

• type - see Table 6

• rebwt - 0/1 - indicates whether BWT has to be computed. If 0 then BWT
from the bwt-file is used. If 1 then BWT is computed and saved to bwt-file
before building the index

• fasta-file - file in FASTA format containing reference sequences

• bwt-file - file containing BWT (see above)

• index-file - output file where index is saved

3.2.2 Mapping

Usage: mapper [options] reads_fastq output_bam

Main options:

--help produce help message

-i [--index] arg path to the index

-r [--read-size] arg size of the reads

-e [--errors] arg (=0) maximum number of errors

-l [--limit] arg (=-1) process only that many reads

Advanced options:

-c [--cutoff] arg (=100) cutoff

-s [--substrings] arg (=0) number of substrings to divide into

11

Type CEbv/64 CEbwt CEtext

ssa 64 1 8 32 1 8 32
ssa 64 2 8 32 2 8 32
ssa 64 4 8 32 4 8 32
ssa 64 1 8 64 1 8 64
ssa 64 2 8 64 2 8 64
ssa 64 4 8 64 4 8 64
ssa 64 1 16 32 1 16 32
ssa 64 2 16 32 2 16 32
ssa 64 4 16 32 4 16 32
ssa 64 1 16 64 1 16 64
ssa 64 2 16 64 2 16 64
ssa 64 4 16 64 4 16 64
ssa 64 1 32 32 1 32 32
ssa 64 2 32 32 2 32 32
ssa 64 4 32 32 4 32 32
ssa 64 1 32 64 1 32 64
ssa 64 2 32 64 2 32 64
ssa 64 4 32 64 4 32 64
ssa 64 1 64 32 1 64 32
ssa 64 2 64 32 2 64 32
ssa 64 4 64 32 4 64 32
ssa 64 1 64 64 1 64 64
ssa 64 2 64 64 2 64 64
ssa 64 4 64 64 4 64 64
ssat 64 1 8 1 8
ssat 64 2 8 2 8
ssat 64 4 8 4 8
ssat 64 1 16 1 16
ssat 64 2 16 2 16
ssat 64 4 16 4 16
ssat 64 1 32 1 32
ssat 64 2 32 2 32
ssat 64 4 32 4 32
ssat 64 1 64 1 64
ssat 64 2 64 2 64
ssat 64 4 64 4 64

Table 6: Parameters in supported index types

12

References

[1] Pizza&chili. http://pizzachili.dcc.uchile.cl.

[2] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression
algorithm. Technical report, 1994.

[3] Paolo Ferragina, Rodrigo González, Gonzalo Navarro, and Rossano Ven-
turini. Compressed text indexes: From theory to practice! CoRR,
abs/0712.3360, 2007.

[4] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM,
52:552–581, July 2005.

[5] Rodrigo González, Szymon Grabowski, Veli Mäkinen, and Gonzalo Navarro.
Practical implementation of rank and select queries. In Poster Proceed-
ings Volume of 4th Workshop on Efficient and Experimental Algorithms
(WEA’05), pages 27–38, Greece, 2005. CTI Press and Ellinika Grammata.

[6] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order
entropy-compressed text indexes. In Proceedings of the fourteenth annual
ACM-SIAM symposium on Discrete algorithms, SODA ’03, pages 841–850,
Philadelphia, PA, USA, 2003. Society for Industrial and Applied Mathemat-
ics.

[7] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM
Comput. Surv., 39, April 2007.

13

