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Abstract

We consider large Markov chains which posses specific decomposable
structure, the so called Nearly Completely Decomposable Chains (NCD
chains). A new theoretical approach for approximate computations of
NCD chains has been recently introduced in [25]. The method of forest
erpansions gives raise to aggregation algorithms, which approximate
effectively the characteristics of Markov chain. (i.e. the solutions of
the system Lx = b or LTx = b, where L is derived from transition
matrix). This novel approach allows us to treat both types of prob-
lems in the unified manner. To our knowledge for the first time an
aggregation scheme was used to calculate Markov chain characteristics
other than stationary distribution.

In this paper we present the efficient algorithms for these problems.
The algorithms are based on grouping the states of a Markov chain in
such a way that the probability of changing the state inside the group
is of greater order of magnitude than interactions between groups.

In contrast to existing methods our approach is based on combinatorial
and graph-theoretic framework and can be seen as an algorithmization
of famous Markov Chain Tree Theorem.

We establish some preliminary results on the complexity of our algo-
rithms. Numerical experiments on several benchmark examples show
the potential applicability of the method in real life problems.

*Preliminary version of some of the results described here has been presented at the
workshop Computer Algebra in Scientific Computing CASC 2001 [14]



1 Introduction

It is often possible to represent the behavior of a physical system by de-
scribing all the different states which it can occupy and by indicating how
it moves from one state to another in time. If the future evolution of the
system depends only on its current state, the system may be represented by a
Markov process. When the state space is discrete, the term “Markov Chain”
is employed.

Markov chains are used so frequently in various areas of computer science
and in other disciplines that it is not difficult to justify their importance.
Making use of a suitable defined Markov chain which model the system of
interest one is able to locate bottlenecks in communication network; to assess
the benefit of increasing the number of CPUs in multiprocessor systems and
to quantify the effect of scheduling algorithms on throughput [30].

Markov modeling, in particular reliability modeling, is used to estimate the
mean time to failure of components in systems as diverse as software system
and aerospace systems. The applicability of Markov chain approach is not
restricted to computer science and engineering; other disciplines which ben-
efit from it are biology, genetics, agriculture, economics, demographic and
education [9].

In this paper our attention is restricted to finite discrete-time Markov chains
(although methods from Section 3 are valid also for continuous time Markov
chains). A finite discrete-time Markov chain over a state space S is usually
represented by a one-step transition probability matrix P of order n,
where n is the number of states in S. The (4, j)-th element of P, denoted
Dij, is the one-step transition probability of going from state ¢ to state j.

In what follows, boldface capital letters (e.g. P) denote matrices, boldface
lowercase letters (e.g. m) denote column vectors, italic lowercase and upper-
case letters (e.g. a) denote scalars and italic letters (e.g. S) denote sets.

For a transition probability matrix P, any vector w satisfying
' =a"P, Y m=|rl=1, (1)
i€s

is called a stationary probability distribution cf. [18, 20]. Intuitively,
a Markov chain initialized with a stationary distribution follows this distri-
bution at all points in time. On the other hand, the long-run behavior of a



Markovian system starting from any state is revealed through the solution
of (1). It is crucial to compute a stationary distribution in estimating perfor-
mance measures for modeled systems. For queueing systems, these measures
may be the average number of customers, the mean waiting time, or the
blocking probability for a specific queue. In communication systems, these
measures may be the total packet loss rate, the probability of an empty sys-
tem or the communication throughput for packet switching networks. In any
case, the measures may be computed exactly if 7 is available.

Besides stationary distribution, some other characteristics of a Markov chain
are also considered, such as first-passage time between states or the number
of visits in a fized state before absorption. To compute them, one has also to
solve a system of linear equations similar to (1) (cf. Section 2).

The most elegant way to deal with (1) is to find the analytical formulas for
the solution of the system. Unfortunately, it is usually impossible to obtain
the analytic solutions for models that incorporate the characteristics sought
by modelers; hence the only way is to solve the problem numerically [30].
Problems arise from the computational point of view because of the large
number of states which systems may occupy. It is not uncommon for thou-
sands of states to be generated even for simple applications. On the other
hand these Markov chains are often sparse and possess specific structure (cf.
Section 1.1).

To illustrate the applications of Markov chains let us consider a simple model
of an interactive computer system. Figure 1 represents the architecture of a
time-shared, paged, virtual memory computer. This model was widely stud-
ied in the literature [8, 30]; it is considered again in more detail in Section 4.
The system consists of:

e a set of terminals from which users generate commands;
e a central processing unit (CPU);
e a secondary memory device (SM);

e an I/O device (I/0O).

A queue of requests is associated with each device and the scheduling is
assumed to be FCFS (First Come First Served). When the command is gen-
erated, the user at the terminal remains inactive until the system responds.
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Figure 1: Illustration for Interactive Computer System

Symbolically, a user having generated a command enters the CPU queue.
The behavior of the process in the system is characterized by a computing
time followed by a page fault, after which the process enters the SM queue,
or an input/output (file request), in which case the process enters the I/0O
queue. Processes which terminate their service at SM or I/O queue return
to the CPU queue. Completion of a command is represented by a departure
of the process from the CPU to the terminals.

States of the Markov chain corresponding to our model are determined by
numbers of processes in all queues. The state space is large but sparse in
sense of connections; there are maximum 6 transitions going out from any
state. Figure 2 illustrates the structure of a Markov chain (for 3 users in the
system): three coordinates correspond to the number of processes in three
queues; for example state (0,0,3) denotes three tasks waiting in I/O queue.
At the moment we mention only how large the state space of the chain is —
a more detailed analysis is deferred to Section 4. It turns out that the model
for only 20 users yields the transition probability matrix of order 1,771 with
11,011 non-zero elements and for 50 users the matrix defining Markov chain
is of order 23,426 with 156,026 non-zero elements.

1.1 Algorithms based on decompositional methods

A lot of research has been done concerning the numerical solutions of some
linear equations that occur when one studies Markov chains (see for exam-
ple [8, 17, 30]). Almost all methods for solving a system of linear equations
are adapted into this context: iterative and direct methods, projection tech-
niques and the concept of preconditioning (see [31]). The applicability of a
method depends strongly on the structure of a Markov chain considered.
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Figure 2: The 3D structure of Markov chain model of Interactive Computer
System

For solving the chain of medium size, direct methods could be applied.
Among others, algorithm, called GTH (Grassmann-Taksar-Heyman [15]) in
the sequel, is adopted in Section 3 for dealing with small subsystems arising
from decomposition of large Markov chain.

When the state space of the chain is large, even if it has sparse structure,
for most of direct solving methods, elimination of one nonzero element of
the matrix, produce several nonzero elements in positions which previously
contained zero. This negative phenomenon is called fill-in and the amount
of it can be so extensive that available memory is quickly exhausted.

To avoid immense fill-in iterative methods can be used, as in that case, the
only operation in which the matrices are involved are multiplications by one
or more vectors. These operations do not alter the form of the matrix. For
these reason, iterative methods (such as Gauss-Seidel iteration or Successive
Overrelaxation) have traditionally been preferred to direct methods. On the
other hand, a major disadvantage of iterative methods is a very long time
often required for convergence to the desired solution. In the case of direct
methods the upper bound on the time required to obtain the solution may
be determined a priori.

In this paper we consider nearly uncoupled or nearly completely decomposable
Markov chains. Such chains often arise in queueing network analysis, large



scale economic modeling and computer systems performance evaluation. The
state space of these chains can be naturally divided into groups of states such
that transitions between states belonging to different groups are significantly
less likely than transitions between states within the same group.

For solving nearly uncoupled Markov chains, a family of new methods has
been proposed recently. They are jointly classified as iterative aggregation/-
disaggregation [19, 28] methods, and based on a very attractive decomposi-
tional approach. The idea follows well known divide and conquer principle
— if the model is too large or complex to analyze, it is divided into sepa-
rate subproblems. Ideally, subproblems can be solved independently and
the global solution is obtained by “merging” the subproblem solutions to-
gether. Such an ideal situation occurs when the Markov chain is completely
decomposable i.e. its matrix has a block structure in which all off-diagonal
blocks has only zero elements. If the nonzero elements in off-diagonal blocks
are small compared with those of the diagonal blocks we say about nearly
completely decomposable (NCD) Markov chain (see [6, 30, 9]).

As a example consider a NCD Markov chain defined by the following matrix:

Ly Ly Lin
L — Ly L?2 Loy
Lyi Ly2 ... Lyn
where Liq, Lgg, ..., Lyy are square subblocks. The stationary distribution

of m can be partitioned such that # = (my,m9,...Ty). Assume that L is of
the form:
L = diag(Ly1, Lag, ..., Lyy) + E
where component E incorporates all off-diagonal blocks. The quantity
n
|El|o = max > e

1<4<n <
Jj=1

is often referred to as degree of coupling and is taken to be a measure of
the decomposability of the matrix (see [24]). If it is zero then the Markov
chain is reducible (i.e. completely decomposable).

Another concept closely related to decomposability is that of lumpability.
In [9] it was proved that the concept of NCD Markov chains coincides with
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quasi lumpability property. We define a Markov chain to have the lumpability
property if it can be divided into independent subchains and consequently
its state space can be significantly reduced. In many cases, performance
measures we are interested in depend on the probability of being in certain
groups of states, i.e., the probability needs to be computed at a coarser level.
In such a case, solving much smaller lumped chain will give us all needed
information. Instead of formal definition, consider a simple example of a
lumpable Markov chain defined by the probability transition matrix P:

1 2 3 4
02 03 04 0.1
03 0.1 04 0.2
0.5 0.1 0.1 0.3
05 03 02 O

=W N =

It has four states which can be partitioned into two groups S; = {1, 3}
and S = {2,4} in such a way that the transition probability from each
state in a given group to another group is the same. (For a fixed state,
the probability of making the transition to a whole group is obtained by
summing up all transitions probabilities from this state to each state inside
the group.) Treating the partitions as new aggregated states we can form a
smaller, lumped chain, given by the following matrix:

81 52
S 02+04=054+01=06 03+01=014+03=04
Sy 0.3+04=054+02=0.7 01+02=03+0.0=0.3

If we are looking for all stationary probabilities then aggregation algorithms
should be used. They are designed to exploit the nearly decomposable struc-
ture in one of two ways. In the first approach, some states are excluded
from state space and the chain based on remaining state space is solved; the
other way is to lump groups of closely related states together and solving
the lumped Markov chain, treating each lump as a single state. This latter
approach forms also a background of a new class of aggregation algorithms
proposed in [25].

In Section 2 a mathematical theory behind the algorithms is sketched. The
next Section contains algorithms themselves. The complexity analysis and
several case studies can be find in Section 4. We report results of experi-
ments we have performed — they are very promising and clearly justify the
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applicability of the algorithms in practical problems. This novel approach,
joining successfully research from different areas such as combinatorics, lin-
ear algebra and numerical analysis, leads to algorithms which have several
advantages over previous aggregation methods:

e The applicability of traditional aggregation methods is restricted to
Markov chains with a regular NCD structure; in particular, the ex-
istence of asymptotically transient states (i.e., those states with the
outgoing probability of a bigger order of magnitude than the ingoing
probability, cf. 2.1) are problematic (such states are very common in
large Markov chain resulting from practical examples). Algorithms de-
rived from the method presented here work correctly when such states
are present.

e Most of decomposition methods considered in the literature are de-
signed only to solve the problem of stationary distribution, and other
characteristics of Markov chain are neglected. In contrast, one of the
algorithms presented in Section 3 allows to compute mean hitting time;
designing the procedures for other characteristics is discussed latter.

2 Directed forests method

This Section is devoted to mathematical preliminaries crucial for aggrega-
tion algorithms considered in Section 3. The structure of different subjects
discussed in this Section may be explained by the diagram presented in Fig-
ure 3. We discuss several known results enabling to express the solution
of systems of linear equations by means of weighted directed forests (in the
underlying graph). Having such forests expansion of a characteristics under
consideration (such as stationary distribution), we are looking for an effec-
tive procedure to compute it. To this end the concept of powerly perturbed
Markov chain is used (see [25]), as in this case there exist recursive formulas
enabling to evaluate effectively the forest expansions. This procedure yields
an approximation of characteristics considered.
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Figure 3: The structure of this Section.

2.1 Preliminaries

Consider a directed graph G = (S, E), where S is nonempty finite set of
vertices (called also states) and E C S x S is a set of its edges. In this
section let S ={1,2,...s}, for some s > 1.

The classification of states in a graph follows the Markov chain terminology
(see [18, 20] for a detailed treatment of Markov chain theory). State j is
reachable from state i if there exists a path (nonempty sequence of edges)
leading from ¢ to j (we use the short notation i — j). A state ¢ is called
recurrent if, for any state j, i — j implies j — %; otherwise, 7 is called
transient. We say that states ¢ and j communicate (i <> j) when i — j
and j — i; state ¢ is absorbing if there is no j # i reachable from . When all
states communicate, the Markov chain and its graph are called irreducible.

A strong component of GG is any maximal subgraph C' of G, with the
property that ¢ — j for any two states 4,7 of C. A strong component is
absorbing if it has no outgoing edges. Strong absorbing components are also
called closed classes in the sequel. An underlying graph of each Markov
chain has at least one strong absorbing component.

An acyclic subgraph f = (S, E) of G containing all its vertices, in which any
state has out-degree at most 1 is called a directed spanning forest. A set
of states R C S with no outgoing edges in Fy forms a root of a forest. When
the root is singleton we talk about directed spanning tree. In this section,



we write shortly forest (tree) instead of directed spanning forest (tree).

Let Fg(R) denote the set of all forests in G having the root R (the forest
is identified with the set of its edges). We will omit the subscript G when
it is obvious from the context. For readability, if R = {i1,42,...%m} we use
the notation F(i,...%,) instead of F(R). For fixed i ¢ R and j € R,
Fij(R) C F(R) denotes a set of forests with the root R containing a path
from 7 to j.

Now we enrich directed graphs with weights, corresponding to the probability
of changing the state in a Markov chain. A square matrix A of size s with
elements from C (field of complex numbers) induces a graph G(A) with states
{1,2,..., s} and edges between all pairs (7, j) with a;; # 0. In G(A) we define
the (multiplicative) weight of a forest f = (S, Ef) as

w(f)= H (—ai)

(i.5)€Ef

and the weight of a set F of forests is defined by

fer

For completeness, we put w((S,0)) =1 (empty forest, R = S) and w(}) =0
(empty set of forests).

Formally, a Markov chain with the state space S = {1,..., s} is defined as a
sequence X = (X})sen of random variables such that the probability of X; = j
depends only on X; ; (for details, we refer to [12, 18, 20]). Thorough this
paper, we assume that Markov chains are given by a probability transition
matrices — the only difference between these two ways of introducing a
Markov chain is that given X, we have a distinguished initial distribution
Xy, which in not given in a probability transition matrix.

It was observed, that many facts are valid simultaneously for both discrete
and continuous time Markov chains. To deal with them at the same time
we use a laplacian matrix, i.e. matrix L = (l;);,_,, lij € C satisfying
lii = _Zj:j#ilij for i = 1,...,8.

Denote by I the identity matrix of size s. Let P be the transition probability
matrix of a Markov chain X. It is easy to verify that matrix L =1— P is
a laplacian matrix induced by P. From now on, we assume that the Markov
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chain is introduced by the Markov chain laplacian matrix i.e. laplacian
matrix with nonpositive real off-diagonal entries. Such matrices are known
in graph theory and combinatorics.

For U,W C S and a square matrix A of size s, let us denote by A(U|W)
the submatrix of A resulting from deletion of rows and columns indexed by
U and W respectively. For the simplicity of notation we write A;; instead
of A({i}|{s}). Let e, and 0, denote column vectors with each component
equal to 1 and 0 respectively.

Many characteristics of Markov chains are solutions of systems of linear equa-
tions in one of the following form:

b (2)
=b, (3)

where R is a subset of states and b is a nonnegative vector of size s — |R)|.
As an example of (3), consider computing the stationary distribution. By
(1), the stationary distribution of a Markov chain defined by a laplacian
matrix L = (l;;); ,_; is a nonnegative, normalized vector w = (m1,..., ms)7T,
being the solution of following system:

'L =0" (4)

Assuming for simplicity that the states numbering implies 75 > 0, one of
possible ways of solving (4) is to compute the solution a, of a system of the
form (3):

LssTas = —(ln, ceey lls—l)T

and then to normalize the vector a’ = (al',1). On the other hand solving
system (3) can be reduced to computing the solution of (4) for appropriately
defined laplacian L.

Another interesting characteristics of the Markov chain, is parametrized by
a subset of states R C S. The mean hitting time is an expected number
of steps before reaching the set R. More formally, for R C S, i,j € R, and
k € R we have the following definitions:

TR = min{t > 0: X; € R} — the hitting time of the set R,

Pr;(A) = Pr(A| X, = i),
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E;A = E(A|X, = i) — expectation conditioned by starting from
state ¢,

m;(R) = E;7p — the mean hitting time of R.

The following equality is easy to verify (cf. [18]):

m,(R) =1+ Zpijmj(R);
J¢R

it can be reformulated in the matrix form (2) as follows ( m = (m;(R)) ;e\ g):

L(R|R)m =e.

2.2 Markov chain tree theorem

We express the solution of a system of linear equations as a rational function
of directed forest weights (called the forest expansion) [4]. For stationary
distribution this is formulated in Markov Chain Tree Theorem (Theorem 2.1).
We also give analogous expansions for other characteristics. Unfortunately,
expressions obtained could contain an exponential number of summands. In
Section 2.5 we present recursive formulas yielding the effective procedures for
evaluating forest expansions in the special case of powerly perturbed Markov
chains.

Without loss of generality assume that states are numbered in such a way
that R={s—|R|+1,...,s}; we assume that R # (). For a laplacian matrix
L of size s x s, aset R C S and i, j ¢ R consider forests in graph G(L). The
following facts have been proved in [11] and [25], respectively:

det L(R|R) = w(F(R));
Fi(RU {j}))]
w(F(R)  lijes\r

(we omit subscripts and write F(R) instead of F¢r)(R), etc.). Now, consider
the system of linear equations of the form (3):

(5)

if w(F(R))#0then L(RIR)™ = [w(

ATx=b (6)
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for A = (ay)i7t, x=(z1,..., 25 1), b= (by,...,bs 1)T, x,b € C*L. Set

ij=1r

L = comp(A,b) = (::;T [1)> , where (7)

s—1 s—1 T s—1
1= (—Zau,...,—Zas_l,j) and b:Zb] (8)
j=1 j=1 j=1

Recall that F(i),7=1,...,s denotes the set of spanning trees rooted in the
state ¢ in the graph G(L). The following facts can be concluded from (5) and
Cramer formulas:

(i) The system ATx = b has ezactly one solution if and only if w(F(s)) #
0;

(i) ifw(F(s)) # 0, then the only solution of (6) is given by z; = w(F (i) /w(F(s)).

Consider again the problem of computing the stationary distribution 1 =
(mi,...,m)" of a Markov chain defined by the laplacian matrix L = (l3;); ;.
Assume that an underlying graph of the Markov chain has exactly one absorb-
ing strong component and the states are numbered in such a way that 7, > 0.
Now, putting A = Ly, x = (2,...,%)T and b = (~ls1,..., —lss-1)"
in (6) leads to the following theorem (cf. equation (2.1)).

Theorem 2.1 (Markov chain tree theorem) If the underlying graph of
a Markov chain has exactly one absorbing strong component, then the sta-
tionary distribution is given by:

___w(Fa)
Z Zjesw(f(j))

, fori=1,...s;

This was proved independently by many authors, among them [13, 27]; Al-
dous [1] calls it "the most often rediscovered result in probability theory”.
A proof by Matrix Tree Theorem was proposed in [25]. Analogously, one
obtains a forest expansion for the mean hitting time, for a set R C S:

ngR w(Fi;(RU {5}))

)= = F )

Other characteristics widely studied in the literature are:
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1ij(R) = B [ g<ier, 1(Xi = j)] — the mean number of visits be-
fore absorption,

pi(R) = Pr;{X,, = k} — the probability distribution in the
hitting time of R.

1 if ¢ is true
0 otherwise

where 1(¢) = {

They can be computed by solving systems of the form (2). For a Markov
chain determined by laplacian matrix L, such that graph G(L) contains a
spanning forest rooted in a fixed subset R of states, there exist analogously
to Theorem 2.1 the following forest expansions, for i,7 € S\ R, k € R:

oy wFE(RU )

Hil) =" Em)
_ wlFulR)

plB) =" F )

In Section 3 we present the combinatorial aggregation algorithms approx-
imating vectors 7 = m;; and m = m,;;(R). Analogous constructions for
P = pix(R) and p = p;;(R) are discussed.

The next section introduces the concept of powerly perturbed Markov chains
— the wide class of Markov chains, for which there exists an effective way to
approximate the solution of the system Lx = b or L7x = b.

2.3 Powerly perturbed Markov chains

Nearly completely decomposable (NCD) Markov chains (see [6, 9, 30])
are defined by laplacian matrices that can be ordered so that the matrix has
a block structure in which the nonzero elements of the off-diagonal blocks
are small compared with those of the diagonal blocks. Such matrices often
arise in queueing network analysis, large scale economic models and computer
systems performance evaluation.

Formally, NCD Markov chain is defined as a family of Markov chains {L(¢), € €
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(0,£1)}, indexed by a small parameter ¢ < 1, for some constant £, > 0:

L, o ... O
0 L, ... O .
Le)=| . . . .| teb
o o ... L,
where Ly, Lo, ..., L, are irreducible laplacians of size s, sg, ..., S, respec-

tively, and L' is a laplacian of size s = s; + 8o + - - - + S

In the literature one can find some generalizations of NCD Markov chains,
aiming in expressing several different orders of magnitude of interaction
strength (see for example [16]):

1. The linearly perturbed Markov chains
L(e) = Lo + €Ly,
where Ly and L; are laplacian matrices;

2. The polynomially or analytically perturbed Markov chains

N
L(e) = Z e"Ly,
n=0
where every L,, is an laplacian matrix, N < oo;

In [25] a wider class of perturbed Markov chains have been defined, subsum-
ing both classes above. For given functions A,B : R — R, the notation
A(e) ~ B(e) means that:
lim Ale)
£—0 B(g‘)
We also set A(g) ~ 0, if there exists ; # 0 such that for any € € (—¢1,¢1),
Ae) = 0.
A family {L(e) = (li;(€)); j=1, € € (0,€1)} of laplacian matrices of size s X s is
a powerly perturbed Markov chain, if there exist matrices A = (d;;)i jes,
and D = (dij)i,jESa 5@' > 0 and d,’j € RU {OO}, for 7,7 € S, such that the
asymptotic behavior of laplacians L(¢) is determined by A and D as follows:

=1

~lij(e) ~ i (9)
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We assume that d;; = oo if and only if ¢;; = 0. In the following, we use also
the concept of powerly perturbed nonnegative vector which is defined as
the family {b(g), ¢ € (0,e1)} of nonnegative vectors of size u, such that for
some vectors ¢ = ()%, and z = (z;)%, with (; > 0, z; € RU {00}, for
1 =1,...,u, the following holds:

bi(e) ~ g™ (10)

Consider the following graph induced by matrix D (we take into account
asymptotically nonzero entries):

G*(D) = (S, {(2,]) eSxS: dij < OO})
For an arbitrary forest f and a set F of forests in G*(D) we study parameters:
(
d(f) = Z dij
(i) < ()es an asymptotic weight of the forest f.
6(f) = T] 4

\ (Zaj)ef

(d(F) =mind(f)

fer
(ii) < 5(F) = Z 5(f) an asymptotic weight of the set of forests F.

\ fEF:d(f)=d(F)

Now, let w(f)(¢) and w(F)(g) denote the weight of a forest f and a set F of
forests in the graph G(L(¢)) induced by L(e), respectively. Observe that for
sufficiently small ¢, G(L(¢)) = G*(D). The following facts are easy to prove:

Fact 2.2 Consider a powerly perturbed Markov chain defined by L, with ma-
trices A and D such that (9) above holds; furthermore let f and F be a forest
and a set of forests in G*(D). Then:

(i) w(f)(e) ~ o(f)e;
(ii) w(F)(e) ~ 6(F)elP.

We describe the asymptotics of solutions of systems Ax = b and ATx = b,
related to powerly perturbed Markov chains, in terms of directed forests
expansions. It turns out that a solution of a system of linear equations, for
a perturbed chain, can be treated as a perturbed vector.
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Theorem 2.3 ([25]) Let matrices A and D be such that (9) above holds,
for a powerly perturbed Markov chain {L(¢),e < e1}; let R C S, where S is
a set of states. Moreover let vectors ( and z of size u = s — |R| be such that

(10) holds, for a powerly perturbed vector b. Suppose that there exist a forest
with the root R in G*(D). Then the following hold:

(1) the solution x(g) = (zi(€))ies\r of the system
LY (R|R)(¢)x(e) = b(e)
satisfies for i € S\ R the relation
xl(g) ~ nighia
(2) the solution x(¢) = (x;(€))iecs\r of the system

L(R|R)(¢)x(e) = b(e)
satisfies for i € S\ R the relation
zi(e) ~ 77;5”’
where the coefficients n;, h;, n; and b} are some constants, i =1, ..., u.

This theorem can be seen as a generalization of the Markov Chain Tree
Theorem in three respects. First, powerly perturbed Markov chains are con-
sidered. Second, a general class of problems is taken into account. And third,
part (2) deals with non-transposed matrices.

From the proof of this theorem we can deduce the asymptotic forest expan-
sions for Markov chain characteristics in terms of parameters d(F) and 6(F),
for suitably defined sets F of forests in G*(comp(D, z)). Both cases (1) and
(2), although described similarly, differ substantially in difficulty — this will
be visible later in Section 3 in different structures of algorithms.

In the simpler case (1) of a transposed system for stationary probability
distribution, we have:

zi(e) ~ th
where

d(F{) - mind (F(D),
YDIRICLN) (11)

j:hj=0
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For the other case (2), more complicated formulas express the asymptotic
coefficients 7, and h!:
; = min [d(F;;(RU{j ;
@i = min [d(Fii(RU{7}) + 2]
h; = a; — d(F(R)),
(F(R)) (12)

m = > S(Fi(RUL) ¢ | J6(F(R)).

JES\R:d(Fij (RU{j}))+zj=ai
While in (11) it is sufficient to consider spanning trees rooted in some state i,
in (12) it is necessary to take into account spanning forests rooted in RU{;}.

Unfortunately, all obtained expressions for asymptotic coefficients are compu-
tationally non-tractable, at least directly, because of their exponential length.
We discuss the aggregation approach, yielding effective and accurate proce-
dures for computing the asymptotic coefficients and approximate values of
the interesting characteristics of NCD Markov chain.

2.4 Asymptotic coefficients and exact solutions

In Section 3 we describe algorithms which compute asymptotic coefficients
h and 7 from Theorem 2.3. Now, we explain how they can be used to
obtain the approximation of e. g. stationary distribution vector (case (1)
from Theorem 2.3).

The algorithm takes as an input laplacian L = (/;;) defining Markov chain
and parameter € and consists of three steps:

1. construct matrices A and D such that:

—lij = 5ij8dij;
2. run Algorithm 2 to compute vectors n and h;
3. set m;i(e) = mehi.

This algorithm is correct in a sense that for sufficiently small €, the computed
value m(g) can be arbitrarily close to an exact value. Even more, when
£ < min;; —l;;, we have d;; = 0 (for all 7, j), hence L = A and Algorithm 2
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gives the exact solution (in particular, h; = 0, for all 7). In that case, no
aggregation can be done and algorithm runs a direct (GTH) method. On
the other hand, larger ¢’s allow to profit from a specific block structure of
a laplacian matrix, which improves efficiency. Hence, there exists a tradeoff
between the time and space efficiency of the algorithm and a precision of the
approximation.

2.5 Fast computation of forest expansions

The algorithms discussed in Section 3 use the combinatorial approach to com-
pute the asymptotic coeflicients (vectors h = (h;);_, and n = (n;)5_, from
Theorem 2.3), hence they approximate the solution of systems L(R)(e)x(e) =
b(e) and LT (R)(¢)x(g) = b(g). The algorithms reduce the size of state-space
of a Markov chain by lumping together closely related states. This process is
repeated in the consecutive phases of aggregation during which some graphs
induced by matrices D and A are considered. The algorithms group states
of the Markov chain belonging to the same closed class of the graph and
solve the system of linear equations restricted to this class. A smaller size,
hence tractable, system of equations can be solved by a direct method. The
solution of this system is used to upgrade the values of interested character-
istic computed for each state of the original Markov chain. Such an iterative
upgrade scheme, enabling to calculate effectively the asymptotic coefficients
in the case of stationary distribution and mean hitting time, is discussed in
detail in Section 3.

The task of computing exponents h; is of quite different nature than the
task of computing the coefficients 7;. While the former can be performed
using purely combinatorial methods (hence precisely), the latter uses a pro-
cedure of solving a system of linear equations, exposed to numerical errors.
Although calculating coefficients 7; is of crucial importance, in the sequel
we concentrate on h; only (we explain how to calculate 7; in Section 3.2).
We overview the process of aggregation (it is treated again in more detail in
Section 3) and state some facts on shortest forests, useful in computing
exponents h;.

Consider the graph G = G*(D) and its subgraph G, consisting of the
shortest edges outgoing from each vertex, i.e., for each vertex 7, of those d;;
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which are equal to
m(t) = min d,;. (13)
J

Shortest edges correspond to the largest probability of moving from state ¢
to j. Recall that D = {d;;}. In a single step of the aggregation process,
the graph G is replaced by another graph G’ = aggr(G). Vertices of G’ are
closed classes I of Gy, together with transient states in Gp,. Edges (I, J)
in G' are weighted by d;; defined by the following formula:

dry = zel?;lelJ(dZ] + h(i|I)) where

4
h(i|l) = nklgI)(m(k) — m(i). (1)

Values h(i|I) are computed in Algorithm 2 — they correspond to coefficients
h; in a graph induced by a closed class I. Fact 2.4 below justifies such an
aggregation scheme in order to calculate h; — recall from (11) that to this
aim we need d(F(i)). From this fact (and from an accompanying fact for 7;)
one derives correctness of (19) in Section 3.2. Let ¢ denote any state of G
such that there exists some tree rooted in i (F(i) # (). By a shortest tree
rooted in 7 we mean any tree rooted in i such that d(f) is minimal, i.e.,

d(f) = min d(f') = d(F(7)).

freF (i)

Fact 2.4 Let f be a shortest tree in G, rooted in ©, and let I be a closed class
i Gin containing i, t.e. 1 € I. Let f; be a shortest tree in the subgraph of
Gmin induced by I, rooted in i. Moreover, let f' be a shortest tree in G,
rooted in I. The following holds (for simplicity, we apply here notation d(-)
to graph G' as well):

a(f) = d(fr) + d(f).

For a non-transposed case, we need a similar fact for forests, related to (12).

Fact 2.5 Let R be a subset of states of G s.t. F(R) is nonempty. Let I # J
be closed classes or transient states in Gy, S.t. R and IUJ are disjoint. Fix
a state i € I. Let f; be a shortest tree in the subgraph of Gy induced by J,

rooted in j. The following holds (similarly as before, we extend here notation
d(-) and F.(_) to graph G'):

mind(F;(RU {j})) = mind(f;) + d(F1s(RU {J}))
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Figure 4: A: shortest tree rooted in ¢ from Fact 2.4, B: shortest forest rooted
in RU j from Fact 2.5

We finish here the discussion about the mathematical background of algo-
rithms — these are presented themselves in the next Section 3. Due to lack
of space, a lot of mathematical facts cited here are left without proof and for
some others the argumentation is only sketched. For more details we refer
the reader to the bibliography pointed in the text.

Figure 2.5 illustrates concept of shortest forests factorization from Facts 2.4
and 2.5.

3 Combinatorial aggregation algorithms

We present two algorithms — one approximates the stationary distribution
and the other gives the approximation of the mean hitting time. They repre-
sent two classes of methods, designed to calculate approximation of solutions
of linear systems build up of transpose or non-transpose matrices (cf. Sec-
tion 2.1). The main idea is to reduce the size of a Markov chain state space by
performing the aggregation of closely related states. During the computation
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process one needs to solve small Markov chains, corresponding to one aggre-
gate (i.e. to solve the system of linear equations of the form L(R|R)x = b or
L”(R|R)x = b). To this aim the GTH method is adopted below; it can solve
both kinds of systems, while keeping the numerical errors on a relatively low
level (cf. Section 3.1).

3.1 Direct methods

If one has to solve the system with specific structure, the standard LU-
decomposition is often not the best choice. Similar situation appears in the
case of stochastic matrices, arising when one studies linear systems for some
Markov chain problems. Then the state-reduction method seems to be
the most suitable.

The state-reduction method (called here also GTH algorithm) was introduced
in [15] by Grassmann, Taksar and Heyman, where it was applied to the
equations yielding the stationary vector; applications to other characteristics
of a Markov chain are proposed among others in [21, 25]. This approach has a
probabilistic interpretation: each iteration can be viewed as a construction of
a different Markov chain with one state less. Moreover, from its solution the
solution of the original problem can be obtained. Numerically, this algorithm
behaves surprisingly well: its numerical features are discussed in many papers
(see [5, 17, 8]). The rest of this section is devoted to explain the idea of the
GTH approach; we use here the notation from Section 2 and the presentation
is based on [8, 25|. Consider the system of equations:

Ax = b, (15)
where the matrix A can be for example a transposed laplacian matrix:
L"(R|R)x =D, (16)

b is nonnegative vector of size u := s — |R|, s is the number of states of a
Markov chain and R denotes subset of states forming root of the directed
forest in the graph induced by the laplacian L. From Section 2.2 (c.f. equa-
tion( 5)) we know that the matrix L(R|R) is invertible. Assume that we are
interested in computing the stationary probability vector i.e:

S
Lir =0, where Zwi =1
i=1
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Then we can put R = {s}, as the induced graph is necessarily irreducible.
Hence, equivalently, we can solve the system:

Lfsas = —(ln, lis.. -515—1)T,

being an instance of (16) and then normalize the vector a’ := (al1).

GTH algorithm has two variants: for a transposed and nontransposed lapla-
cian L, respectively. Below we describe the GTH variant dealing with trans-
posed system (such as for the calculation of the stationary distribution);
analogical approach, proposed for nontransposed variant in [21, 25], is men-
tioned later.

In the algorithm, we act similarly as in Gaussian elimination: the system of
equations is transformed into equivalent one having upper diagonal matrix
and then the solution is computed by backward substitution. The only (but
crucial) difference lies in the manner we calculate pivots. It turns out that
the specific structure of a matrix A having zero column sums allow us to cal-
culate the solution using only nonnegative numbers and to avoid subtraction

operations. Let
am[o 7]
w Ay
Then all columns of A sums to zero (el A = 0) and also —a;; = eT'w.
In the first elimination step we aim to clear the first column of A. Assume
B.A = a(l)l Z;:| )

where

1 0] _ 1 0
B1:|:_l I B '= |:i I]
aii _ aii
then AJ, has the same features as A: it has zero column sums, moreover it

corresponds to Markov chain with one state less. To prove this notice that
we have:

e’A=e’(B;'B))A =0,

e'B;'=(1,1,...,1) {}V (I)} =(0,1,...,1),

ail

0,1,....,1)(B1A) =0 = efA}, =

23



By easy induction it follows that for £ = 1,2, ..., matrix Aj, is a transposed
laplacian matrix of smaller size. All diagonal elements of this matrix (except
the last one) are positive, hence the following equality is satisfied by pivots:

u+1

Ur = Z wy, (17)

j=k+1
where w; are elements of vector w (cf. step 6 in Algorithm 1).

Hence, we modify the elimination step as follows: rather then calculating
pivot in the usual way, we replace the pivot with the negated sum of the
off-diagonal elements in the unreduced part of the same column.

As a conclusion from the above discussion we formulate Algorithm 1. It is
presented in a more general setting i.e. for solving (16); recall that [;g :=

ZjeRlij for i = 1,...,u.

Algorithm 1 GTH method for solving the system LT(R‘R)X =b
1: for k=1towudo

2 g1 =R

3 Ay = by

4: end for

5: for k=1tou do

6 up ==l

7. fori,j=k+1,1#jtou+1do
8: lij == lij — ligli; [ u

9: end for

10: end for

11: for k£ = u downto 1 do
12: T 1= (lu+1,k — Z;’L:k-f—l ljkl'j) /’U,]c

13: end for

The GTH variant of Gaussian elimination can be also used to solving the

system of the form:
L(R|R)x =b, (18)
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where b is nonnegative vector of size u. Systems like (18) are used to deter-
mine for instance the vector of mean hitting time (cf. Section 3.3) — from the
equations L( R|R = e, as well as the distribution matrix at the moment
reaching the set R — from the equations L( R|R JA = —L( R|S \ R). The
only difference here is dealing with non-transposed matrix; now the pivots
are calculated as a upper-diagonal row sums.

3.2 Stationary distribution

In this section, we restrict our attention to the class of problems defined by
a system of linear equations of the form

As an illustrative example, we consider here the stationary distribution —
analogous results for Markov chain characteristics defined by the system with
non-transposed L are discussed in Section 3.3.

Recall that for the powerly perturbed Markov chain L(e) with the state space
S, the stationary probability vector 7 (e) satisfies the relation:

mi(€) ~ me™, where
d(F({i}) — mind (F({7})),
i N/ D0 S(FE)

jih;=0

Aiming at computing the coefficients n; and h; effectively, consider the fol-
lowing aggregation process, which gives rise to the sequence of graphs G* =
(St EY), for 1 = 0,1,...; starting from 7 = 1, the superscript 4 enumerates
consecutive phases of algorithm.

Initially, define the graph G° as G, where G = G*(D). So, in the first step
we start with the subgraph of G*(D) consisting of all shortest edges outgoing
from every vertex. For k =1,2,..., we define inductively G}, = aggr(Gg_1)-
Recall that the states of G, are all closed classes and all transient states in
G*~1; the set of edges linking the aggregated states is constructed as in (14).
Now, as a new graph Gy we take (G} )min, Whose states are the same as in
G, and whose edges are the shortest edges in GJ,.
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Algorithm 2 Calculate asymptotic coefficient n and h, i.e. approximate the
stationary distribution m; = n;eh.
1: construct G° = (S°, EY)

2: k:=1

3: repeat

4:  find partition of G¥~! into closed classes

5. construct S*

6: for each closed class in S*, say I* do

7 construct laplacian Ly

8: compute stationary distribution i. e. solve the system LIx =b
9: compute m(I¥) (cf. (13) in Section 2.5)

10: for each aggregated state I*~! in I* do

11: compute n*(I¥~1|I*) and h*(I*-1|I%)

12: for each state i aggregated into state I*~! do

13: upgrade n; = n(i|I*) and h; = h(i|I*) according to (20)
14: end for

15: end for

16: for all neighbors of class I* do

17: determine shortest edges

18: end for

19: end for

20:  construct new set of aggregated edges E*
21:  GF .= (Sk, EF)

222 k==Fk+1

23: until G* has only one closed class

24: set m; := 0, for all transient states ¢ in G
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Notice that the main loop ends precisely when the partitioning of G, results
in the only one closed class together with possibly some transient states.

From now on, we identify the aggregated state I € S* with the set of states
from S it contains. For a fixed state ¢, consider the family of closed classes
(aggregated states):

fiycr'crPc...cr"=8\T

(T denotes the subset of transient states) containing i during the consecutive
phases of aggregation. We assume that the graph G", resulting from the
n-th phase, is irreducible. Denote by n(i|I*) and h(i|I*) coefficients 7; and
h; computed in the subgraph restricted to some closed class I*. Following
this convention, n*(I*71|I*¥) and h*(I*~|I*) correspond to the n and h co-
efficient for the aggregated state I*~! computed during the k-th phase for
the subgraph of G* restricted to a closed class I*¥. The following recursive
relation can be shown:

7ri(5) ~ nl(i‘ll)ghl(i“l)nQ(Il‘12)6h2(11|12) . nn(Influn)gh”(l"—lu“),]r([n)
(19)
where 7(I™) = 1 is the stationary probability of being inside the class I™.
This relation holds due to the iterative upgrade scheme for asymptotic coef-
ficients (step 12), the correctness of which follows by Fact 2.4:

h( |Ik71) + hk(lkfl‘lk)
k

h(i|T*)
i k |I —l)nk(lk—luk) (20)

l
(i I*) = n(i
Coefficients h*(I*~1|I*) can be computed using the value of m(I*) (step 10):

hk Ilcfl Ik — I — Ilcfl .
(L5 [I%) Ilngf;fm() m(I*)
So, we have only to consider all vertices I aggregated during the previous
step, which belong to the closed class I*.

We discuss the effective way to compute n*(I*~1|I*). Recall that we have
assumed that our Markov chain possesses specific block structure. Hence the
size of all considered closed classes I* are small compared with the size of
the whole state space. It opens the possibility of using direct methods for
solving systems of the form L?x = b, inside each class independently. From
the solution (say x = (21,9, ...)), having already computed h* and putting
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some fixed ¢, the corresponding coefficients n* are derived as the solution of
the equation:

nk(Ik—luk) _ xlk,lgahk(ﬂc_luk).

3.3 Mean hitting time

Procedure 3 Aggregation
1: construct G° = (5%, E?)

2: k=1

3: repeat

4:  find partition of G¥! into closed classes (ignore edges leading to u*)
5. construct S*

6: for each closed class in S*, say I*, s.t. I* # uf do

7 construct laplacian Ly

8: compute stationary distribution i. e. solve the system Lix =b
9: compute m(I*)

10: for each aggregated state I*~! in I* do

11: compute nF(I¥|I*) and h*(I*¥71|I%)

12: end for

13: for all neighbors of class I* do

14: determine shortest edges

15: end for

16: end for

17:  construct new set of aggregated edges E* (update edges leading to u*)
18:  G*:= (Sk EF)

190 k:=k+1

20: until G* has the same number of states as Gy_;

We describe here an approximation algorithm for another important char-
acteristics of the Markov chain — the mean hitting time. According to
Section 2.1, this is an interesting example of the linear equations with a
non-transposed matrix. It is parametrized by a subset of states R C S and
the task is to approximately calculate the expected number of steps before
reaching this set. Formal definition can be found in Section 2; recall that
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m;(R) satisfies the following equality:
J¢R
In the matrix form ( m = (m;(R));cq p):

L(R|R)m = e, (21)

where e = (11...1)T. Hence, computing mean hitting time corresponds to
approximating the solution of the system L(R|R)x = e. The following forest
expansion is given for the vector m;(R):

2 jer @(Fi(RU {7}))

== Em)

In the case of a powerly perturbed Markov chain it was proved that:
mi(R)(e) ~ Bire"", (22)

where asymptotic coefficient 5 and b are defined as follows:

a; := I}éi;g[d(ﬂj(R u{ihl, (23)

biR =a; — d(F(R)), (24)
D jerd(F (Ruiiy)=a O(Fi(RU{G}))

fini= s . )

The algorithm for the mean hitting time performs the aggregation process
starting from a graph G° = (S°, E°), which differs slightly from that in
Algorithm 2. Namely, all states from R are replaced by a some single new
state ug; it has no outgoing edges and for any i ¢ R, an edge from i to
upg is given by min;cg d;; (this means that we are interested in reaching any
of states of R). Moreover, we add one more state u*, and set dj« := 0,
O :=1 for all i ¢ RU {ug}. Intuitively, this new state corresponds to the
right-hand side vector e in equation (21), forming a fragment of the matrix
(comp(L(R|R)",€))T. Notice that edges leading to u* are ignored, during
the construction of a new set of aggregated states in steps 4 and 5. However
they are updated in step 17 according to the same rule as other edges (cf.
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formula (14) in Section 2.5). Finally, if the graph constructed by now we
denote by G, as Gy we take G, similarly as previously.

Algorithm 4 consists of two phases. The first one runs the aggregation
scheme, similarly as before; however, due to the artificial states ugp and u*,
being sinks in the graph, the aggregation can leave several closed classes of
the original graph not lumped together. Then, the second one calculates
coefficients b;r and (;r for these closed classes. Computed values are then
propagated throughout each class.

Algorithm 4 Calculate asymptotic coefficients b;z and S, i.e. approximate
the mean hitting time m; = B;re"?
1: Aggregation

2: for each closed class in S*, say I*, s.t. I* # v do

3:  compute byrp 1= dry — m(I¥)

4: end for

5: repeat

6: remove from S* classes I* having minimal bt value, denote the set
of removed classes by M

7. for each I* € M and any state i € S° belonging to I* do

8: b;r == bIkR

9: end for

10:  for each I* remaining in S* do

11: let n(I*) := min ke s (dpr e — m(I%) + byrg)

12: compute bk := min (b g, n(1¥))

13: end for

14: until the set S* = {uy}

15: construct laplacian L, taking S* as the set of states

16: solve the system Ly, (uz3X = b*, where b}, equals the probability of
moving from I* to u* in G,

17: for each I* € S* different than uy and each state i € S° belonging to I*
do

18:  compute Big := T ey

19: end for

breg
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3.4 Improvements and extensions

The construction of laplacian L in step 4 of Algorithm 4 requires taking
into account all edges between aggregated states, not only the shortest ones.
Hence, coefficients ;g computed by this algorithms do not coincide precisely
with those needed in (22); fortunately, the computed values, say [, are
asymptotically equivalent:

mi(R)(e) ~ Blae"™.

Originally, in step 4 of Algorithm 4 only shortest edges were considered —
the necessity of the modification was observed during experiments. A similar
modification of Algorithm 2 is also possible. The procedure solving a system
of equations in a closed class (while calculating 1) can take into account all
edges between vertices inside this class rather then only the shortest ones.
After such a modification the algorithm computes no more the asymptotic
coefficients — however, it gives a closer approximation of stationary distri-
bution. In certain situations it can significantly improve the accuracy of
approximation.

Algorithm 4 can be easily applied to calculation of other characteristics of
a Markov chains, such as: p = p;(R) — the probability distribution (in R)
in the hitting time and and p = p;;(R) — the mean number of visits before
absorption.

4 Analysis of algorithms and case studies

We analyze combinatorial aggregation algorithms, in particular we estimate
time and space complexity of Algorithms 2 and 4. Then we point out that
the efficiency of algorithms depends strongly on the value of parameter ¢
which determines the number of phases of algorithm and the structure of
aggregation process in each phase.

Complexity analysis. The upper bound on time complexity of Algo-
rithms 2 and 4 presented in previous chapter is O(n?), where n is the number
of states. The upper bound on memory needed is O(n?). However, the com-
plexity of algorithms depends strongly on the structure of a Markov chain
under consideration. In this section we study in detail some important cases.
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The main conclusion is that if we can profit from a specific structure of a ma-
trix (e.g. if we choose an appropriate ), time O(n?) is sufficient. Moreover,
when a matrix is sparse, i.e. the number of edges m is significantly smaller
that O(n?), the algorithms use only space O(n + m). This is crucial since
matrices appearing in applications are often sparse and it is not rare that
m = ©(n). These estimates strongly motivate further studies of methods to
establish an appropriate value of parameter .

Consider a laplacian with n states and m edges (i.e. m is the number of
nonzero entries in the probability transition matrix). Assume that in a step of
the aggregation process, the underlying graph is divided into k closed classes
of size ny,na, ..., ny, respectively (i.e. ny+ng+...+n, = |S|, transient state
are singleton closed classes).

Theorem 4.1 The time and space costs of a single phase of aggregation (in
both algorithms) are as follows:

k
T =0(n+m+ Z ni®),
i=1

S =0(n + m + max n;?).
1<i<k
Proof: The time cost of n + m is due to Tarjan’s algorithm for finding
strongly connected components, used to determine closed classes. Construc-
tion of aggregated edges (i.e. edges in the graph used in the next phase)
can be performed in time proportional to m. Finally, Zle n;% is the cost of
running GTH procedure k times, for each closed class separately.

For the space cost, it is determined by the size of representation of a matrix
together with a quadratic space needed in GTH algorithm. O

The cost of the algorithm for stationary distribution is equal to the total cost
of all aggregation phases. It is difficult to foresee, in general, the number of
phases and the number of closed classes in each phase. This is why we study
below some special cases — the aim is to demonstrate that the complexity is
strongly dependent on the degree of aggregation. In the following let p denote
the number of phases; when necessary, we use superscripts, like n(, k@) m(,
nj(i), to denote the number of states, etc., in phase 7; n(!) =n,m) = m, etc.
Below Siotar and Tiore denote the total time and space cost of all aggregation
phases, respectively.
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1. p=1,k =1; a pessimistic case — all states are aggregated during the
first step; GTH procedure is performed on the whole matrix; T}y =
(’)(n3), Stotal = (’)(n2)

2. p=n—1, kO =n—i; “lazy” aggregation — after step i there are still
n — 1 — 1 isolated states; Tiora; = O(n?), Siotar = O(n + m).

3. The “ripple” aggregation: here we assume that n = b-c; there are p =0
aggregation phases. In the first phase c states are aggregated into a
closed class; while other states are isolated; in each consecutive phase
a group of c states is added to the closed class while remaining states
are isolated. The time cost of the first phase is then

T=0Mm+m+ (n—c+c)).

If we take ¢ = ©(y/n) then the cost of whole computation is Ti,e =
(’)(nZ), Stotal = O(n -+ m)

4. The “ideal” equilibrated aggregation, i.e. k&) = v/n(@. Assume that
n) = 22' for some [ > 1. We have then p = [, k) = n(+) = /p(®,
nj(i) =vn® , 7 < Vn®. Tt is an easy calculation to show that T}, =
O(TLZ), Stotal = O(TL + m)

5. Consider an abstract algorithm consisting of several phases. The cost
of each phase is polynomial w.r.t. to the size of input data for this
phase. Assume that the size of input data decreases at least twice in
each phase. Then, it is easy to see that the cost of the algorithm is of
the same order of magnitude as the cost of its first phase. Now, look
at the generalized ideal aggregation: k@ = (n®))1=¢ n;0) = (n(®)e,
j < kD n=n0=2" where « = —— and 0 < & < 1. The size of

l1—e¢

problem in the i-th phase of aggregation satisfies the inequality:

n-e)’ ﬁ.,
2Z
hence the cost of whole computation is the same as a cost of the first

phase:
Tiotar = O(m + n(1+26))'

For the mean hitting time, the time cost must be increased by O(k?), where
k = k® = n® is the number of closed classes when the aggregation processes
stops; the space cost is increased by O(k?).
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Degree of coupling There are several approaches aiming at defining a
measure of decomposability of a transition matrix (see for example [24]).
Such a measure is usually closely related to the parameter € and could be
probably used to find an optimal value for €. Moreover, a right value of € can
significantly improve precision of approximation as well as time and space
needed for the algorithm.

In our approach it is assumed that some preprocessing phase is needed to
find an appropriate value of €. It seems to be a challenging task to design an
automatic procedure which would propose a value for €, that would guarantee
a desired accuracy and time/space effectiveness of aggregation.

4.1 Numerical experiments

In this section we describe the results obtained when combinatorial aggrega-
tion algorithms are used to compute stationary distribution and mean hitting
time of several Markov models. We compare our combinatorial aggregation
method with a direct GTH method in the case of small size examples and
with the block successive over relaxation (BSOR) in the case of large mod-
els. The latter one was chosen because it is widely accepted as the best
known method calculating the approximate solution of problems related to
large and sparse Markov chains (see for example [10, 23]). First we concen-
trate on small examples which appear frequently in the literature (cf. [6, 30]).
Although the sizes of the matrices considered are quite small, it is still in-
structive to examine the effect of using our algorithms in such cases. Two
problems investigated in Sections 4.4 and 4.5 are real life examples and had
been extensively studied by many authors (see e. g. [10, 8, 33]).

For each small example considered in the sequel we compute the relative error
of the solution (denoted by 7* and m*) compared with outcome of the GTH
procedure (vectors: 7 and m, respectively). Errors are computed w.r.t. GTH
algorithm, despite that it is also exposed itself to numerical errors. GTH is
suitable for this purpose as it has an a priori error estimation [5, 25].

Another two measures of algorithms accuracy correspond to a mean number
of correct most significant digits and are given by the following formulas (n
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is the size of the matrix):

1< |F —
Prec, := —— ) log,; ——— +logy, 5,
1 n ; g10 7] g10
Prec, := —log,, Jim* = ]z + log, 5.
i[>

In the case of combinatorial aggregation we discuss also the aggregation
process: the value of €, the number of phases and the number of aggregated
states in each phase.

For readability, instead of laplacians we show probability transition matrices
(zero entries are marked by dots). The experiments show several advantages
of our algorithms over existing methods:

e for the first time the aggregation approach is successful in computing
the Markov chain characteristics which are solutions of non-transposed
systems of equations, e.g. the mean hitting time.

e the regular NCD structure! is not obligatory — the algorithms deal
also with asymptotically transient states;

e comparison with GTH procedure shows that precision of approximation
computed by our algorithms is on the level of logé for the prespecified
parameter &;

e a very promising application of our algorithms is to use the approximate
solution yielded by them as a starting point for some iterative methods
e.g block successive over relaxation.

4.2 Small examples

Courtois matrix

The first problem considered in this section is the 8 x 8 Courtois matrix
studied already in [6] as an example of NCD Markov chain. The parameter
¢ is chosen to be 0.001. During computing stationary distribution first phase
of aggregation results in three aggregated states, I = {1,2,3}, J = {4,5}

Hor a formal definition see conditions 6.1 — 6.4 in [30] pp. 335.
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and K = {6, 7,8}, which are aggregated in the following step into one closed

class.
[ .85 . .149 .0009 . .00005 .00005
1 .65 .249 . .0009 .00005 .00005
1 .8 0996 .0003 . .0001
.0004 . 7 .2995 .0001
.0005 .0004 .399 .6 .0001 )
.00005 . . .00005 .6 .2499 .15
.00003 .00003 .00004 . 1 .8 .0999
.00005 .00005 .1999 .25 .55 i

Figure 5: Courtois matrix with two asymptotically transient states.

Courtois matrix with two additional states

We have modified the Courtois matrix by adding two asymptotically tran-
sient states. It is worth noting that this matrix does not satisfy NCD condi-
tions, as not all off-diagonal elements have small values, but it is still feasible
for our aggregation algorithms. The parameter ¢ is chosen to be 0.001. In the
first step of aggregation we obtain three closed classes (similarly as before)
and two transient states 9 and 10. Second step of aggregation results in one
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closed class lumping together all states (cf. Fig.5).

.85 .149  .0009 . .00005 .00005
1 .65 .249 . .0009  .00005 . .00005
1 .8 0996 .0003 . .0001
.0004 7 .2995 . .0001
.0005 .0004  .399 .6 .0001 . .
.00005 . .00005 .6 2499 .15 .
.00003 .00003 .00002 . 1 .8 .0999 .00002
.00005 .00005 .1999 .25 .55 . .
.33 . . .67
| .05 .625 325 ]

Figure 6: Aggregation in Stewart matrix.

Stewart matrix

The last small example is that proposed by Stewart [30]. Note the impact of
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different £ values on accuracy of the result.

;! . .0 . . .
. 999994 . . . .000006
999995 . . . . . . .
. . .019999 44 44 .000003 .000002 .000003
.0001 . . 99 .0099 . . .
.0002 .0002 99 .00959 . . 000005 .000005
.000001 . . . . .49 .49 .001
.000003 . . . .000007  .49999 .49 .006
. . . .000001 . . .009999 .
|- . .000005 .000005 . . .00999 .01 .98

The following array summarizes results of experiments. Recall that preci-
sion measures are accurate indicators of the number of correct digits in the
approximate solution. Observe the effect of choosing smaller € in the case of
Stewart example. In general, calculated precision measures are on the level
log% — the same situation occurs in larger examples.

roblem tvpe L(R|R)X =b LT(R|R)X =b
p yp Prec; (m*, m) | Precy(m*, m) [| Prec;(7*,7) | Precy(n*,7)
Courtois 4.98 4.81 4.45 4.23
modified Courtois 4.88 4.86 4.48 4.26
Stewart
e =0.01 4.05 4.85 1.97 2.03
e = 0.00001 5.95 5.49 4.20 4.79

4.3 Block Successive Over Relaxation (BSOR)

Block successive over relaxation method belongs to the class of stationary
iterative methods which can be expressed in the simple form [10]:
2 = Az®) 4 ¢ k=0,1,.

. ey

where neither A nor ¢ depend on the iteration step k. In particular, BSOR
procedure (see Algorithm 5) is parametrized by:

e starting solution vector;
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e relaxation parameter w (0 < w < 2);
e block partitioning of the matrix;

e stop criterion.

Algorithm 5 assumes the partitioning of laplacian matrix into N blocks; i-th
diagonal block denoted by Lj; is of size n;. In the sequel we consider five

Algorithm 5 BSOR method for solving the system LT(R‘R)'R‘ =

repeat
for i=1to N do

Z(+1) (1_w LT ZLJZ ]+1)+ Z L]Z ]

j=i+1

Solve (e.g. using GTH method) system of equations:

L:x (k+1) _ (k+1)

zzz -

end for
normalize vector x := (xT,...,x%) where xI = (z;1, Ziz, - - - , Tin;) L :
Tij
7Tij =

N .
Dim1 D Tij

until stop criterion succeeds

block partitioning strategies:

SCC We are looking for strongly connected components in the underlying
graph of the Markov chain. Edges weighted with probability less than ¢
(prespecified decomposability parameter) are ignored. This partition-
ing coincides with one resulting from the near-decomposability test of
the Markov Chain Analyzer (MARCA) [32].

CC Consider a graph obtained from underlying graph of the chain by re-
placing each directed edge having probability greater than ¢ by an
undirected one. Blocks for partitioning are then the connected compo-
nents of this graph.
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CC*

Aggr

Asymp

4.4

As before partitioning is induced by connected components, but ad-
ditionally all singletons are grouped into a single component. This
strategy was used in [10, 7]

We take a partitioning into closed classes computed during the first
phase of combinatorial aggregation. Recall that in the aggregation
process the subgraph of shortest edges leaving each state is considered.

The complete aggregation process which approximates the stationary
distribution induces a partition of states into blocks according to the
values of asymptotic coefficients: each block groups states with the
same value of h;. Such a partitioning is illustrated in Figure 8 for
two-dimensional Markov chain model.

Interactive Computer System

In this section we come back to the model described in Figure 1 in Section 1
(for a detailed treatment see [29]). We recall that the model represents a time-
shared multiprogrammed, paged, virtual memory computer system, modeled
as a closed queueing network. In order to perform numerical experiments we
assign specific values for the parameters of the model such as:

the number of user in the system N = 3, 10, 20, 50,

Belady-Kuehner lifetime function q(c, M, k) where M denotes the size
of primary memory and «, k are some constants which depend on
program characteristics and memory management strategy [29],

the mean think time of a user at the terminal \~! = 10s,
the mean service time of a SM u;! = 5ms,

the mean service time of a 1/O device uy' = 20ms,

the mean compute time I/O requests r = 20ms,

the mean compute time of the process ¢ = 500ms.

We fix all parameters, except the number of users in the system (V), ac-
cording to [29]. Recall that the state of the system is coded by a triple
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z = (21,29, 23) of non-negative numbers, where z; denotes the number of
users thinking or busy at theirs terminals, z, and z3 denote, respectively, the
number of processes in the queue of SM and I/O. Obviously z; + 25+ 23 < N.
There are at most six transition which can be made from any state, i.e. from
(21, 22, 23) to states:

(21 — 1, 29, z3) with rate  Az; = 0.0001z
(21 + 1, 29, 23) with rate ¢! = 0.002
(21,22 — 1, z3) with rate =0.2

3
(21,20 + 1, 23) with rate ¢(z1) = a7 '(F2)K = 100((1\[1;821))5
(21, 22, 23 — 1) with rate uq = 0.05
(21, 22,23+ 1) with rate 7! =0.05

We present outcome of the algorithm approximating mean hitting time and
stationary distribution for 3, 10 and 20 users. In each case we analyze number
of phases in aggregation process (denoted by p), the number of aggregates in
the first step (k) and the precision measures. In the array n states for the
size of the matrix and m is the number of its nonzero entries. Parameters
Togr and Ty, correspond to the time cost of aggregation algorithm and GTH
procedure, respectively. Set R = {0,0,0} i.e. all processes are in the CPU
queue.

H N ‘ n ‘ m ‘ Prec; (m) ‘ Precy(m) ‘p ‘ k ‘ Tagr ‘ Toin H
3 20 60 4.16 3.87 1] 14 | 0.01s | 0.003s
10| 286 1320 4.21 4.21 1| 77 |0.97s| 25s
20| 1.771 | 11.011 4.97 4.97 11252 | 89s | > 8h

The results for the stationary distribution are summarized in the following

array.
IN| n | m [Preci(m)|Preca(m)|[p| k| Tugr | Tyrn |
3 20 60 3.4 4.49 214 10.025|0.003s
10| 286 | 1320 2.97 3.7 211110.37s| 24s
20 | 1.771 | 11.011 3.16 6.0 2121 30s | >8h

We conclude that combinatorial aggregation in the case of non-transposed
system of equations (mean hitting time) is not less effective than in the case
of stationary distribution. Up to now aggregation approach was used only
in solving problems like stationary distribution. Combinatorial aggregation
algorithms allow us to treat both type of problems in the unified manner.
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. . ICS example (N = 50)

starting 7 partition Z bl ‘ it ‘ AT o ‘ ||7TTL||oo
uniform SCC=Aggr ol 22 | 0.45e —10 | 0.59¢ — 16
CC* 1221 | 161 | 0.92e — 10 | 0.16e — 14
CC 1326 | 252 | 0.99e — 10 | 0.26e — 14
aggregation SCC=Aggr o1 4 0.97¢ — 10 | 0.69¢ — 16
CcC* 1221 48 | 0.95e — 10 | 0.17e — 14
CC 1326 | 48 | 0.95e —10 | 0.17e — 14

Table 1: Numerical results for ICS example

For ICS model with 50 users we perform several experiments with iterative
method. The solution computed by combinatorial aggregation is used as a
starting vector for BSOR algorithm. The speed of convergence, measured in
the number of iterations, is compared with BSOR starting from the uniform
distribution. We investigate three block partitionings:

1. SCC for ¢ = 0.0002 which gives the same partition as Aggr into 51
strongly connected components.

2. CC* for € = 0.1 yields 1221 blocks (connected components).

3. CC for € = 0.003 results in 1326 blocks.

The stopping criterion we use in BSOR is ||x(®) —x*~V|| < stop_tol where
stopping tolerance stop_tol is set to 107!, In the table ||A7|| is the infinity
norm of the difference between the last two iterates and ||7TL|| is the true
residual upon termination.

Notice (cf. Table 1) that starting from approximate solution computed by
combinatorial aggregation allows us to reduce the number of iterations about
4 — 5 times. In some cases e.g. for SCC partition the time cost of Algo-
rithm 2 is comparable with the cost of the first iteration of BSOR. One can
additionally accelerate combinatorial aggregation by using iterative method
(e.g. SOR) instead of GTH for solving subproblems inside closed classes.
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lostifu=Nx lostifv=Ny

Figure 7: Telecommunication model for 2D example

4.5 A Two-Dimensional Markov Chain Model

We consider here a two dimensional Markov chain, studied e.g. in [10, 32]. It
is a simple telecommunication model illustrated in Figure 7. There are two
servers; each has a queue of waiting tasks of prespecified maximum size. A
task arrives, wait for the first server, then waits for the second and finally
leaves the network.

2D example (N, = N, = 64)
# bl | #it. | [[Anfloe | [[77L[[o

starting w | partition

o CC 65 | 505 | 0.96e — 10 | 0.25¢ — 11
Asymp | 120 | 595 | 0.98¢ — 10 | 0.31e — 11

- orenntion |__CC 65 | 410 | 0.98¢ — 10 ] 0.25¢ — 11
BEICE Asymp | 129 | 414 | 0.97¢ — 10 | 0.31e — 11

2D example (N, = N, = 128)

starting w | partition -
& #OL ] #it. | [Anfl | [7 L]

uniform CC 129 | 1030 | 0.99e — 10 | 0.51e — 11

Asymp || 257 | 1212 | 0.99e¢ — 10 | 0.59e — 11

. CC 129 868 | 0.99¢ — 10 | 0.52¢ — 11
aggregation

Asymp || 257 | 876 | 0.99e —10 | 0.58e — 11

Table 2: Numerical results for 2D example.

The states are pairs (u,v) where u ranges from 0 through N, and v ranges
from 0 through V,. States correspond to the size of two queues. In this model
we assume transitions to the South, East and North-West. From any non-
boundary state (u,v) there are following values assigned to the transitions:

(u,v — 1) (South) with rate v task leaves the network
(u+1,v) (Bast) with rate 2025.0 task arrives to first queue
(u—1,v+1) (North-West) with rate wu task enters second queue
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Figure 8: Aggregation in 2D example.

The state space of the Markov chain is of size (N; + 1)(NV, + 1). In larger
experiments the values of N, and N, are both set to 128, yielding a matrix
of order 16,641 with 66,049 nonzero elements. For this model we perform
several experiments:

1. the approximate solution is calculated using combinatorial aggregation
algorithm for € = 0.06;

2. the solution is computed by BSOR procedure with CC partitioning
(e = 0.06) and Asymp. We start from the uniform distribution.

3. the solution is computed using BSOR starting from approximation ob-
tained by combinatorial aggregation, the same partitionings are con-
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sidered.

Figure 8 illustrates the process of aggregation in combinatorial aggregation
algorithms for NV, = N, = 4. There are 8 phases of aggregation each shown
in a separate figure. We see a subgraph of shortest edges G, in every
phase; dashed line surrounds the only non-singleton closed class appearing
in that phase. In the last figure the states are colored according to the
values of their asymptotic coefficients yielding Asymp partition for BSOR.
These correspond to consecutive aggregation phases, i.e. those states which
are aggregated earlier have bigger stationary probability. Despite that during
every step there is only one non-singleton closed class, i.e. the aggregation
does not proceed in parallel, the time needed for the whole computation in
only O(n?) (cf. “ripple” aggregation).

The numerical results are summarized in Table 2. We observe about 25%
speedup of BSOR method started from approximate solution w.r.t BSOR
started from the uniform solution. CC partition behaves better than Asymp,
but in the other hand the profit from choosing starting vector is greater in
Asymp.

5 Final remarks

The rapid development of modern communication networks and the need of
algorithm solving hard computational problems resulted in the wide family of
Markov chain models. The most important common feature of these chains
is the big size of their state space. This often eliminates the possibility of
finding the exact solution and the approximation algorithms remain as the
only way to solve the problem.

In this paper we studied a new class of approximation algorithms based on
the combinatorial approach proposed in [25]. We analyzed the complexity
of algorithms and studied their applicability on several Markov models of
communication systems. Both analytic and experimental results obtained
by us classify this new method as a potentially very useful tool in practice.

At the end we discuss some possible extensions of the results presented here.

Open problems:

(1) The combinatorial aggregation approach is a new very efficient algorith-
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(2)

(3)

(4)

mic method for solving problems related to Markov chains, e.g. comput-
ing the stationary distribution. It would be useful to design procedures
for other Markov chain characteristics based on this theory.

An important unsolved problem is to develop a method of choosing an
appropriate value of decomposability parameter €. In our approach one
has to assume some preprocessing phase that performs this task.

It would be interesting to check, whether the algebraic decomposition
approach proposed by us can be useful in proving some relevant prop-
erties of described Markov chains, e.g. rapid mixing.

Another challenge is an error analysis of our algorithm. This would
involve a rather subtle analysis of how the approximation ratio depends
on the aggregation structur e and seems to be a very difficult task.
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