
MSARC – implementation details

Michał Modzelewski Norbert Dojer

The msarc implementation is written in the Python language in the version 2.7 dialect. It makes
heavy use of the numpy library for array operations, as well as scipy.sparse for storing the posterior
probability matrices in compressed row format. The BioPython library is used for sequence input and
output. A customized version of the probA program is used for the pairwise stochastic alignment of
sequences. The probA implementation of the partition function was chosen because the available source
code provides several substitution matrices to work with, and solves the problem of numerical overflow
when aligning large sequences. The probA tool is exposed to Python as an extension module written
using Cython. The consistency transformation, the main loop of the Fiduccia-Mattheyses partitioner, the
gains computation methods, and the maximal expected accuracy alignment algorithm are also written as
Cython extension modules for speed. Code listings below are simplified for legibility.

1 Module balibase
The balibase module is a thin wrapper around the bali_score program from balibase 3.0, which is
expected to be in the same directory as the calling script. It is used by the balitest and balitest-compare
programs.

2 Module clusteralign
This module contains the main implementation of the msarc method conceptually split into several files.

alignment.py
Contains the definition of the Alignment class which describes and can construct an alignment. This
class is the main access point of the msarc algorithm. An instance of Alignment is created with a
string containing the name of a file containing the aligned sequences in fasta format, and keyword argu-
ments containing the algorithm parameters. An instance of Alignment exposes some public methods and
properties.

alignment A property for accessing the alignment as a MultipleSeqAlignment instance. This can be
calculated on access from the sequences.

value A property that returns the sum of pairwise posterior probabilities value of the alignment.
1 @property
2 def value(self):
3 # self._columns is a list of Graph instances
4 return sum(c.value for c in self._columns)

output A method that prints the alignment to the screen in any format supported by the BioPython
library or the msf format (default).

write A method that writes the alignment to the named file in any format supported by the BioPython
library or the msf format (default).

read A method that reads an alignment from the named file.

1

2 MODULE CLUSTERALIGN 2

Accessing the alignment property causes an alignment to be calculated if the object does not yet contain
an alignment. To this end the alignment property getter method calls some private methods.

_relax A method that performs the consistency transformation on the posterior probabilities the desired
number of times. The actual consistency transformation is delegated to the Graph class.

_align A method that recursively partitions the alignment graph (in the form of an instance of the
Graph class) until a list of columns is produced.

1 def _align(self , graph_or_starts , ends=None):
2 """ Align the sequences."""
3 if isinstance(graph_or_starts , Graph):
4 graph = graph_or_starts
5 else:
6 graph = self._graph.slice(graph_or_starts , ends)
7 graphs = [graph]
8 columns = []
9 while len(graphs) > 0:

10 g = graphs.pop()
11 # Graph depicts a single column , add to columns
12 if g.is_column:
13 columns.append(g)
14 continue
15 # Iterativly partition the graph
16 l, r = g.split()
17 graphs.append(r)
18 graphs.append(l)
19 return columns

_refine A method that performs iterative refinement on the alignment.

graph.py
The definition of the Graph class which is an instance of an alignment graph. An instance of Graph
is created with a list of SeqRecord objects describing the aligned sequences, and keyword arguments
containing the algorithm parameters. The Graph class knows how to partition itself, return a slice of
itself, perform an iteration of the consistency transformation, and coarsen and uncoarsen itself for the
purpose of multilevel partitioning. It populates, on demand, the values of the weights of the edges using
the clusteralign.probA module. Some public properties and methods of the Graph class:

size A property returning the total number of nodes in the graph.

num_sequences A property returning the number of sequences.

lengths A property that returns an array of lengths of the sequences.

max_length A property that returns the length of the longest sequence.

value A property returning the total value of the graph. Only inter-sequence edges are counted, because
only those can remain uncut after alignment.

1 @property
2 def value(self):
3 return sum((m.sum() for m in self._pair_pp.flat if m is not None))

starts A property that returns an array of starting points of the sub-sequences within the sequences.

ends A property that returns an array of end points of the sub-sequences within the sequences.

is_column A property that returns whether the graph represents a valid column.

1 @property
2 def is_column(self):
3 return self.max_length <= 1

2 MODULE CLUSTERALIGN 3

nonzero A property returning the number of non-zero length sequences.
1 @property
2 def nonzero(self):
3 return (self.lengths > 0).sum()

partition A property that returns the partition of the graph as an array of partition points within the
sequences.

relax A method that runs an iteration of the consistency transformation.
1 from numpy import empty_like
2 from clusteralign.matrix import prune
3 from clusteralign._graph import relax_XZ_ZY , relax_ZX_ZY , relax_XZ_YZ
4
5 def relax(self , weighted_transform=False):
6 pair_pp = self._pair_pp
7 self.__pair_pp = new_pair_pp = empty_like(pair_pp)
8 cut = self._params[’cut’]
9 # for every pair of sequences

10 n = self.num_sequences
11 weights =[[1]*n for i in xrange(n)]
12 if weighted_transform:
13 for x in xrange(n):
14 for y in xrange(x + 1, n):
15 weights[x][y]= pair_pp[x,y].sum()/min(pair_pp[x,y].shape)
16 for x in xrange(n):
17 for y in xrange(x + 1, n):
18 # P|(z==x) + P|(z==y)
19 sum_w = weights[x][y]*2
20 new_pp_xy = pair_pp[x, y] * sum_w
21 # P|(z!=x&&z!==y)
22 for z in xrange(n):
23 if z is x or z is y:
24 continue
25 if z < x:
26 relax_ZX_ZY(pair_pp[z, x], pair_pp[z, y], new_pp_xy , weights[z][x]* weights[z][y])
27 sum_w += weights[z][x]* weights[z][y]
28 elif x < z < y:
29 relax_XZ_ZY(pair_pp[x, z], pair_pp[z, y], new_pp_xy , weights[x][z]* weights[z][y])
30 sum_w += weights[x][z]* weights[z][y]
31 else:
32 relax_XZ_YZ(pair_pp[x, z], pair_pp[y, z], new_pp_xy , weights[x][z]* weights[y][z])
33 sum_w += weights[x][z]* weights[y][z]
34 # normalize
35 new_pp_xy.data /= sum_w
36 # cut -off
37 prune(new_pp_xy , cut)
38 new_pair_pp[x, y] = new_pp_xy

slice A method that returns a sub-graph corresponding to sub-sequences with the given start and end
points.

split A method that splits the graph into to sub-graphs along the given partition.
1 def split(self , parts=None):
2 if parts is None:
3 parts = self.partition
4 return (self.slice(self.starts , parts),
5 self.slice(parts , self.ends))

matrix.py
Some helper functions that operate on numpy arrays.

prune A function that zeros all values in a matrix below a given threshold.

2 MODULE CLUSTERALIGN 4

1 from scipy.sparse import isspmatrix_csr
2
3 def prune(array , cut):
4 assert isspmatrix_csr(array)
5 array.data[array.data < cut] = 0.
6 array.eliminate_zeros ()

msf.py
Unlike BioPerl, the Python library BioPython does not support the msf multiple sequence alignment
format. Since this is the preferred alignment format of the balibase benchmark, a custom implementation
was required. This module provides functions for reading and writing such files.

options.py
This module implements an options parser for the alignment programs using Python’s built-in argparse
library.

partition.py
The Graph class delegates the heavy lifting of searching for an optimal partition to the GraphPartitioner
class implemented in this module. A GraphPartitioner instance is created with an instance of Graph
that is to be partitioned. The public method partition is exposed that takes an initial partition as
an argument and returns a new partition optimized by an implementation of the Fiduccia-Mattheyses
algorithm. Helper properties and methods implement the details of the process.

partition A method that finds a balanced minimum-cut partition of the alignment graph by iterating
the Fiduccia-Mattheyses algorithm until convergence.

1 def partition(self , parts):
2 self._parts = parts
3 while True:
4 best_parts = self._testmoves ()
5 if best_parts is None:
6 break
7 self._move ([(i, best_parts[i]) for i in xrange(self._numgroups)])
8 return self._parts

_testmoves Iteratively selects nodes to move between the two sides of the partition, and calculates the
gain.

1 from clusteralign._partition import bestmove
2
3 def _testmoves(self):
4 parts = self._parts.copy()
5
6 gain = 0.
7 bestgain = None if min(self._balance_weight) < self._minbalance else gain
8 bestparts = parts
9

10 allowed = self._new_allowed(parts)
11 while True:
12 if self._balance_weight [0] < self._minbalance:
13 direction = 1
14 elif self._balance_weight [1] < self._minbalance:
15 direction = -1
16 else:
17 direction = 0
18
19 move = bestmove(self._parts , self._gains , allowed , direction)
20 if move is None:
21 break
22 group , partition , delta_gain = move

2 MODULE CLUSTERALIGN 5

23 gain += delta_gain
24
25 self._movepartition(group , partition)
26 allowed[group][partition] = 0
27
28 if min(self._balance_weight) < self._minbalance:
29 continue
30 if bestgain is None or gain > bestgain:
31 bestparts = self._parts.copy()
32 bestgain = gain
33
34 if bestparts is parts:
35 self._parts = parts
36 return None
37 return bestparts

_move Performs a series of moves.

_movepartition Moves the partition boundary and recalculates balance and gains.

1 def _movepartition(self , group , partition):
2 if partition == self._parts[group]:
3 #no change
4 return
5
6 if self.__gains is not None:
7 self._fixgains(group , partition)
8
9 p_group = self._parts[group]

10 max_partition , min_partition = max(partition , p_group), min(partition , p_group)
11 dweights = self._weights_cumsum[group][max_partition - 1]
12 if min_partition > 0:
13 dweights -= self._weights_cumsum[group][min_partition - 1]
14
15 side = self._getside(group , partition)
16 other = 1 if side == 0 else 0
17 self._balance_weight[side] -= dweights
18 self._balance_weight[other] += dweights
19
20 self._parts[group] = partition

_edges_sum A property that returns the edge weight matrix.

_calcgain_all Calculates the gains of moving the partition point to any other point in the sequence.

1 def _calcgain_all(self , group):
2 l_group = self._lengths[group]
3 gains = zeros(l_group + 1, dtype=float)
4 if not l_group:
5 return gains
6
7 for i in xrange(self._numgroups):
8 if i == group:
9 continue

10
11 p_i = self._parts[i] # the current point of partition
12 l_i = self._lengths[i]
13
14 edges = self._edges[group , i]
15 if p_i > 0:
16 gains [1:] += edges[:, :p_i].sum(axis =1)
17 if p_i < l_i:
18 gains [1:] -= edges[:, p_i :].sum(axis =1)
19
20 # divide by 2 here so we don’t have to double the difference in
21 # _fixgain_all , which is called more frequently
22 return gains / 2.

2 MODULE CLUSTERALIGN 6

_calcgains Calculate the gains for all the sequences.

1 def _calcgains(self):
2 g = empty(self._numgroups , dtype=object)
3 for i in xrange(self._numgroups):
4 g[i] = self._calcgain_all(i)
5 return g

_fixgain_all Adjusts the gains for the sequence after the partition has been moved in another sequence.

1 def _fixgain_all(self , group , move_group , move_partition):
2 if move_group == group:
3 raise ValueError
4 l_group = self._lengths[group]
5 p_move_group = self._parts[move_group]
6 gains = zeros(l_group + 1, dtype=float)
7 if not l_group or move_partition == p_move_group:
8 return gains
9

10 edges = self._edges[group , move_group]
11 if move_partition > p_move_group:
12 gains [1:] += edges[:, p_move_group:move_partition].sum(axis =1)
13 else: # less
14 gains [1:] -= edges[:, move_partition:p_move_group].sum(axis =1)
15
16 return gains

_fixgains Adjusts the gains for all the sequences.

1 def _fixgains(self , group , partition):
2 p_group = self._parts[group]
3 if partition == p_group:
4 #no change
5 return
6 g = self._gains
7 for i in xrange(self._numgroups):
8 if i == group or not self._lengths[i]:
9 continue

10 g[i] += self._fixgain_all(i, group , partition)
11 g[group] -= g[group][partition]

probA.py
This module defines functions for calculating the pairwise posterior probabilities of sequence residue
alignment. The actual calculations are delegated to the clusteralign._probA module.

align A function that returns the pairwise posterior probabilities matrix for the given pair of sequences.

pairwise A function that returns a matrix of pairwise posterior probabilities matrices for the sequences
provided.

sequence.py
A module implementing a subclass of BioPython’s Seq class called EmptySeq that is an empty sequence.
This is required when partitioning the alignment graph leaves a slice of one sequence that is of zero
length.

_graph.pyx
A Cython extention module that implements efficient helper functions for the clusteralign.graph module.

relax_XZ_ZY A function that computes a sparse matrix multiplication and accumulates the result
in a third sparse matrix. Only results that are non-zero in the third matrix are stored. Sparse
matrices are stored in index sorted compressed row format.

2 MODULE CLUSTERALIGN 7

1 def relax_XZ_ZY(matXZ , matZY , matXY , weight):
2 for x in range(matXY.shape [0]):
3 startXY = matXY.indptr[x]
4 endXY = matXY.indptr[x + 1]
5 for z in range(matXZ.indptr[x], matXZ.indptr[x + 1]):
6 startZY = matZY.indptr[maxXZ.indices[z]]
7 endZY = matZY.indptr[maxXZ.indices[z] + 1]
8 valXZ = matXZ.data[z]
9 iterXY = startXY

10 indexZY = matZY.indices[startZY]
11 indexXY = matXY.indices[iterXY]
12 while startZY < endZY and iterXY < endXY:
13 if indexZY < indexXY:
14 startZY += 1
15 indexZY = maxZY.indices[startZY]
16 elif indexZY > indexXY:
17 iterXY += 1
18 indexXY = matXY.indices[iterXY]
19 else: # equal
20 matXY.data[iterXY] += valXZ * matZY.data[startZY] * weight
21 startZY += 1
22 iterXY += 1
23 indexZY = maxZY.indices[startZY]
24 indexXY = matXY.indices[iterXY]

relax_ZX_ZY Analogous to the previous function but for the case when the first matrix is transposed.

relax_XZ_YZ Analogous to the previous function but for the case when the second matrix is trans-
posed.

_partition.pyx
A companion module for the clusteralign.partition module that efficiently implements long running code
as an extension module for Python written in Cython.

bestmove A function that returns the best allowed move for the Fiduccia-Mattheyses algorithm.
1 def bestmove(parts , gains , allowed , direction):
2 for i in range(num_groups):
3 l = allowed[i].shape [0]
4 if not l:
5 continue
6 if direction < 0:
7 start , end = 0, parts[i]
8 elif direction > 0:
9 start , end = parts[i], l

10 else:
11 start , end = 0, l
12 group_max_partition = -1
13 group_max_gain = 0.
14 gain = 0.
15 curgain = 0.
16 for j in range(min(start , curpart), max(end , curpart + 1):
17 gain += gains_item[j]
18 if j == curpart:
19 curgain = gain
20 if not allowed[i][j]:
21 continue
22 if group_max_partition == -1 or gain > group_max_gain:
23 group_max_partition = j
24 group_max_gain = gain
25 if group_max_partition >= 0:
26 group_max_gain -= curgain
27 if max_partition == -1 or group_max_gain > max_gain:
28 max_group = i
29 max_partition = group_max_partition
30 max_gain = group_max_gain

3 MODULE CLUSTERALIGN.TESTS 8

31
32 if max_partition == -1:
33 return None
34 return max_group , max_partition , max_gain

_ppalign.pyx
An extension module for Python written in Cython that implements the dynamic programing algorithm
for computing the maximum expected accuracy alignment of a posterior probability matrix. This is used
during iterative refinement by the clusteralign.alignment module.

align_probabilities A function that calculates the maximum expected accuracy alignment path for
the supplied posterior probability matrix, and returns mappings of matches and spaces for the two
sequences.

_probA.pyx
An extension module for Python written in Cython that wraps and exposes the customized probA tool.

align A function that returns the pairwise posterior probabilities matrix for the given pair of sequences
and parameters, as calculated by the customized probA.

3 Module clusteralign.tests
Unit tests for the different parts of the clusteralign module, based on the Python unittest framework.
The test suite can be run using a compatible test runner, for example using the nose test runner by
running the nosetests executable in the msarc directory.
$ nosetests

4 Customized probA
The probA source was modified to ease interaction with the Python code and optimize the computations.
Some small modifications were needed to allow the construction of consecutive alignments with different
parameters (specifically the temperature parameter). The array of posterior probabilities is allocated as
a contiguous block so that it can be exposed directly as a numpy array. The original probA source code
ordered the input sequences by length, which was not required and disabled. The code for computing
the forwards and backwards partition functions, and the posterior probabilities matrix was changed to
minimize the amount of multiplications and exponent calculations performed.

Furthermore, the probA program has a notion of a canonical unambiguous alignment1 that is detri-
mental to the multiple sequence alignment problem. Consider the following alignments

A – – – X X X X B
A Y Y Y – – – – B

and A X X X X – – – B
A – – – – Y Y Y B

The probA definition of a canonical alignment excludes the second alternative which leads to this modified
1Mückstein, U., Hofacker, I.L., Stadler, P.F.: Stochastic pairwise alignments. Bioinformatics 18 Suppl 2, S153–S160

(2002)

4 CUSTOMIZED PROBA 9

recursion for the Gotoh algorithm

Mi,j = max


Mi−1,j−1 + s (ai, bj)

Ei−1,j−1 + s (ai, bj)

Fi−1,j−1 + s (ai, bj)

(1)

Ei,j = max

{
Mi,j−1 + go

Ei,j−1 + gext
(2)

Fi,j = max


Mi−1,j + go

Ei−1,j + go

Fi−1,j + gext

(3)

And this modified recursion for the partition function

ZMi,j =
(
ZMi−1,j−1 + ZEi−1,j−1 + ZFi−1,j−1

)
eβs(ai,bj) (4)

ZEi,j = ZMi,j−1e
βgo + ZEi,j−1e

βgext (5)

ZFi,j =
(
ZMi−1,j + ZEi−1,j

)
eβgo + ZFi−1,je

βgext (6)

Zi,j = ZMi,j + ZEi,j + ZFi,j (7)

The probA source code was modified to use a symmetrical recursion. Either the full recursion by replacing
equation 5 with

ZEi,j =
(
ZMi,j−1 + ZFi,j−1

)
eβgo + ZEi,j−1e

βgext (8)

and equation 2 with

Ei,j = max


Mi,j−1 + go

Ei,j−1 + gext

Fi,j−1 + go

(9)

or the restricted recursion by replacing equation 6 with

ZFi,j = ZMi−1,je
βgo + ZFi−1,je

βgext (10)

and equation 3 with the symmetrical pair of equation 2

Fi,j = max

{
Mi−1,j + go

Fi−1,j + gext
(11)

Source modifications in diff format can be found in the patches sub-directory of the included probA
source tree.

