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“Owing to this struggle for life, any variation, however
slight and from whatever cause proceeding, if it be in any
degree profitable to an individual of any species, in its in-
finitely complex relations to other organic beings and to
external nature, will tend to the preservation of that indi-
vidual, and will generally be inherited by its offspring. (...)
I have called this principle, by which each slight variation,
if useful, is preserved, by the term of Natural Selection, in
order to mark its relation to man’s power of selection.”

Charles Darwin, On the Origin of Species, 1859 1
Drug resistance-associated mutations

In this chapter we present our work on identifying drug resistance-associated
mutations based on comparative analysis of whole-genome sequences of closely
related bacterial strains. In particular, we present GWAMAR, the tool we have
developed to support this type of analysis. In section 1.1, we describe the idea
behind our approach and review some related work. We also introduce the basic
concepts and notations. In section 1.2, we describe in detail the methodology of
GWAMAR. Notably, it uses eCAMBer, described in chapter ??, for identifica-
tion of genetic variations (mutations) among the set of considered strains, which
constitute the genotype data. As a part of this section, we also present weighted
support (WS) and tree-generalized hypergeometric (TGH) score — two statistics
we propose for identifying of drug resistance associations. Additionally, we pro-
pose a Rank-based metascore (RBM) for combining multiple scores into one in
order to compromise between different approaches used to define different scores.
In section 1.3, we present and discuss results obtained by applying GWAMAR
to three datasets — one for S. aureus and two for M. tuberculosis. The presented
results show that GWAMAR can be successfully used for identification of drug
resistance-associated mutations.
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1.1 Introduction

Genome-Wide Association Studies (GWAS) have been successfully applied to
associate human mutations with phenotype of various human diseases and traits
(Manolio, 2010; Stadler et al., 2010; Davies et al., 2011).

The recent progress in genome-sequencing technologies, continuously decreas-
ing the cost of sequencing of bacterial genomes (Loman et al., 2012), enables the
use of similar approaches for genotype-phenotype mapping in bacteria.

The potential of the use of whole-genome comparative approaches to study
drug resistance and host-pathogen interactions in bacteria has been recently pro-
posed (Khor and Hibberd, 2012; Read and Massey, 2014).

1.1.1 Genotype data

The input genotype data for these studies usually comes from in-house sequenc-
ing, rather than publicly available data. This might be caused by the problematic
use of the publicly available data. First, as we noticed in the previous chapter,
the inconsistent and poor-quality annotations of publicly available strains may
complicate that analysis. Second, the phenotype data with respect to drug sus-
ceptibility tests are spread throughout the literature and are not easy to collect.

In the previous chapter of this work, we presented CAMBer and eCAMBer —
the tools to support comparative analysis of multiple bacterial strains — thus
addressing the first issue. In order to overcome the second issue, we have to
perform a careful search of the literature for results of drug susceptibility tests
of the strains considered.

1.1.2 Phenotype data

Minimum Inhibitory Concentration (MIC) is the most commonly used measure
to quantify drug resistance in bacteria. It is the lowest concentration of an antibi-
otic which inhibits visible growth of a colony of bacteria after overnight incuba-
tion. The detailed guidelines for the procedure of drug susceptibility testing are
published by bodies such as Clinical and Laboratory Standards Institute (CLSI),
British Society for Antimicrobial Chemotherapy (BSAC), and The European
Committee on Antimicrobial Susceptibility Testing (EUCAST). The guidelines
also contain information on MIC breakpoints to assign drug resistance or drug
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susceptibility. Sometimes also the third class of intermediate resistance is distin-
guished.

Most of the sources reporting results of drug susceptibility testing provide only
information on the outcome status, rather than particular MIC values. Thus, in
our study we use only three classes of drug resistance: drug susceptible, interme-
diate drug resistant and drug resistant.

For the purpose of this work, we have collected the phenotype data for drug
resistance from the following sources: (i) publications issued together with the
fully sequenced genomes; (ii) NARSA project (http://www.narsa.net); (iii) email
exchange with the authors of some publications; and (iv) other publications found
by searching of the related literature.

1.1.3 Gold standard associations

One problem we faced during the project was caused by the relatively small
number of positive associations available in the databases, which would constitute
the gold standard data to assess the accuracy of our method.

Nevertheless, there are known genes and point mutations responsible for some
of the drug resistance mechanisms. However, these are spread over various studies
and are therefore not easy to gather.

One attempt to collect the information on genetic changes associated with drug
resistance into a database is the Antibiotic Drug Resistance Database (ARDB)
developed by Liu and Pop (2009). However, this database focuses on genes asso-
ciated with drug resistance rather than particular point mutations within them.
We use data available in this database as our gold standard for the case study
on the S. aureus dataset, presented in the results section of the chapter.

Another species-specific database of drug resistance-associated mutations in
M. tuberculosis is the Tuberculosis Drug Resistance Mutation Database (TB-
DReaMDB) developed by Sandgren et al. (2009). This database provides detailed
information on a set of 1230 associations between drugs and point mutations.
Furthermore, it distinguishes a subset of high-confidence mutations which were
often reported in the literature. We use data available in this database as our
gold standard for the case study on the two M. tuberculosis datasets, presented
in the results section of the chapter.
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1.1.4 Phylogenetic information

In this work we investigate the potential of the use of phylogenetic information in
identifying drug resistance-associated mutations. In particular, we propose two
association scores, called TGH and WS, based on the phylogenetic information.

The rationale for our approach is based on two known phenomena. First, the
bacteria isolated from close-distance locations of each other tend to have sim-
ilar genome sequences. As a result, subtrees of the phylogenetic trees tend to
correspond to geographic locations (Daubin et al., 2003).

Second, although the phenomenon of genomic convergence is unlikely in gen-
eral, it is rather common in case of mutations which are subject to evolutionary
pressure caused by drug treatment (Hazbón et al., 2008; Farhat et al., 2013).
Thus, drug resistance-associated mutations tend to be independent of geographic
location and therefore more widely distributed over the tree, as opposed to mu-
tations driven by other environmental factors which tend to concentrate in small
subtrees.

Hence, mutations predicted to occur independently multiple times in the evolu-
tionary history of the bacterial strains are more likely to be associated with drug
resistance, rather than with other environmental factors (Hazbón et al., 2008).
A conceptually similar approach has been taken by Dutheil (2012) to identify
co-evolving mutations in protein sequences.

We note however, it is only an approximation to represent the evolutionary
history of bacteria as a tree. It has been debated that, in the presence of HGT
mechanisms in bacteria, their evolutionary history may be better represented as
a network rather than a tree (Philippe and Douady, 2003). On the other hand,
some estimations show that the effect of HGT on the overall evolution is limited
and does not preclude the use of phylogenetic trees (Daubin et al., 2003; Boto,
2010). We leave the possibility of using other representations of the evolutionary
history of bacteria as a subject of further research.

1.1.5 Basic definitions

In this work, we consider a set S of closely related bacterial genomes. Typically,
this is a set of strains within the same species of bacteria.

Then, we represent the available drug resistance information as a set of drug
resistance profiles R, where each drug resistance profile r ∈ R is represented as
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a vector:

r : S → {’S’, ’I’, ’R’, ’?’}. (1.1)

Here, ’S’, ’I’, ’R’ denote that a given strain is known to be drug susceptible,
intermediate-resistant, or resistant, respectively. We indicate, using question
mark ’?’, that the drug resistance status of a strain is unknown. We call a drug
resistance profile complete if it does not contain question marks.

The genotype data consists of a set of genetic mutations of three types:

• point mutations (in amino-acid sequences),

• gene gain/losses,

• promoter mutations.

In our approach we exclude synonymous SNPs as, according to our knowledge,
there are no known examples of synonymous mutations associated with drug
resistance.

Each mutation is represented as a piece of information adequate for the type
of the mutation (such as gene identifier of the corresponding gene family) and a
vector called mutation profile:

v : S → Σ. (1.2)

Here, for each point mutation, we keep the information on its position in
the multiple alignment of its corresponding gene family and the information
on the gene family identifier. The mutation profile for each point mutation is
determined based on its corresponding column in the multiple alignment. In
that case Σ = ΣAA denotes the set of twenty amino acids. We also assume ΣAA

contains the ’-’, symbol for the gap in the corresponding multiple alignment and
the ’?’ symbol if the gene sequence is unknown for a given strain. We take into
account only columns which contain at least two different characters (ignoring
’?’).

Next, for each gene gain/loss, we keep the information on its corresponding
gene family identifier. For such a mutation, its mutation profile is determined
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based on the presence or absence of a gene in the corresponding gene family for
a given strain. Thus, Σ = {’L’, ’G’}, where v(S) = ’L’ means that the gene is
absent in strain S, whereas v(S) = ’G’ means that the gene is present in strain
S.

Finally, for each promoter mutation, we keep the information on its position in
the multiple alignment of promoter sequences for the corresponding gene family
and the information on the gene family identifier. The mutation profile for each
promoter mutation is determined based on its corresponding column in the multi-
ple alignment. In that case Σ = ΣNT denotes the set of four different nucleotides
together with the ’-’ symbol for gaps in the corresponding multiple alignment
and the ’?’ symbol if the gene promoter sequence is unknown for a given strain.

Analogously, we call a mutation profile complete if it does not contain question
marks.

It should be noted that potentially multiple mutations (for example point mu-
tations at different positions in the genome) may have identical mutation pro-
files. In that situation the mutations would essentially carry the same information
about their mutation profiles. Thus, we also introduce an auxiliary concept called
binary mutation profile. Let S∗ ∈ S denote the reference strain and S ∈ S de-
note any strain. Then, for a given mutation profile v, its corresponding binary
mutation profile

bv : S → {’0’, ’1’, ’?’}, (1.3)

is defined as follows:

bv(S) =


’?’ if v(S) = ’?’
’0’ if v(S) = v(S∗)

’1’ otherwise
(1.4)

Analogous to mutation profiles, we call a binary mutation profile complete if it
does not contain question marks.

We say that a genetic change (mutation) m is present in strain S ∈ S if for its
corresponding mutation profile v, bv(S) = ’1’; otherwise we say that the mutation
m is absent in strain S.
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1.1.6 Problem setting

Finally, we define the problem which we address here: given a list of mutations
and a list of drug resistance profiles, produce an ordered list of associations
between the phenotype and genotype data (represented as drug resistance and
mutation profiles) such that the top-scored associations are the most likely to be
real.

1.2 GWAMAR: Genome-wide assessment of mutations
associated with drug resistance in bacteria

In this section, we present details of GWAMAR, the tool we have developed for
genome-wide assessment of mutations associated with drug resistance. The pre-
sentation includes the preprocessing of input data; computation of the association
scores and results obtained by applying the tool to datasets for M. tuberculosis
and S. aureus.

1.2.1 The pipeline of GWAMAR

GWAMAR is designed as a pipeline. It first employs eCAMBer, the tool described
in the previous chapter, to perform three preliminary steps: (i) downloading
of genome sequences and annotations for the set of multiple bacterial strains
in question, (ii) consolidation of the genome annotations, (iii) identification of
homologous gene families; see Figure 1.1.

In the next step eCAMBer identifies the set of genetic variations and repre-
sents them as mutations profiles. As described in section 1.1.5, three types of
mutations are considered: (i) point mutations in amino-acid sequences, (ii) point
mutations in promoter regions (-50bp downstream the corresponding TIS), (iii)
gene gain/losses.

Here, each gene gain/loss mutation profile is determined based on the pres-
ence/absence of elements of the corresponding gene family among the strains.

For each identified gene family, eCAMBer employs MUSCLE (Edgar, 2004), to
compute its multiple sequence alignment for the set of corresponding amino-acid
sequences. Similarly, it uses MUSCLE to compute a multiple sequence alignment
for the set of corresponding promoter sequences.
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Next, eCAMBer transforms each column in the computed multiple alignment
into a mutation profile, as long as at least one character in that column differs
(there is a mutation present); see Figure 1.1.

Also, eCAMBer supports use of PHYLIP (Felsenstein, 2005) and PhyML (Guin-
don et al., 2010) — the software for reconstruction of the phylogenetic tree based
on the maximal-likelihood approach.

In the next step, for the selected reference strain, GWAMAR computes binary
mutation profiles for each mutation profile, based on formula 1.4. Since multiple
mutation profiles may correspond to a binary mutation profile, this step signifi-
cantly reduces the number of pairs of profiles (resistance and mutation profiles)
to be scored.

Finally, GWAMAR computes several statistical scores to associate drug resis-
tance profiles to the mutation profiles, including mutual information (MI), odds
ratio (OR), hypergeometric (H) score, weighted support (WS), and the tree-
generalized hypergeometric (TGH) score. Additionally, it implements a score we
called Rank-based metascore (RBM) which for combining multiple scores into
one in order to compensate for weaknesses of different individual scores.

Figure 1.1 illustrates the overall data-processing flow implemented in GWA-
MAR.

1.2.2 Association scores

Here we present the association scores implemented in GWAMAR to score pairs
of binary mutation and drug-resistance profiles. These scores include statistics
commonly used in various associations studies, such as mutual information (Wu
et al., 2012), odds ratio (Clarke et al., 2011), hypergeometric test (Cabrera et al.,
2012). It also computes weighted support and tree-generalized hypergeometric
score — the newly proposed statistics to incorporate the phylogenetic informa-
tion. Moreover, it implements the Rank-based metascore for combining multiple
scores into one.

For a given binary mutation profile bB and a given drug resistance profile rR,
we introduce the following auxiliary notations:

• SR
1 = {S ∈ S : b(S) = ’1’ ∧ r(S) = ’R’},

• SR
0 = {S ∈ S : b(S) = ’0’ ∧ r(S) = ’R’},
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Scoring of the mutation 
Profiles 

(multiprocessing)

Genotype data 
(a set of mutations)

Scored list of putative associations
of drug resistance with mutations 

The pipeline of GWAMAR

Phenotype data collected
from literature or databases

(a set of drug resistance profiles)

Phylogenetic tree for the set of
bacterial strains 

Consolidation of genome 
annotations for multiple bacterial strains

and identification of gene families

Preprocessing steps done by eCAMBer 
(this step may potentially be replaced by other tools)

Multiple alignments of identified
gene families computed using MUSCLE

Download of genome sequences and
annotations for a set of bacterial strains

Identification of point 
mutations

Reconstruction of the 
phylogenetic tree employing 

 PHYLIP or PhyML

Binarization of mutation 
profiles into binary mutation

profiles
The reference strain

Figure 1.1: Schema of the pipeline of GWAMAR. For a set of considered bacterial strains,
the input data for GWAMAR consists of (i) a set of mutations; (ii) a set of drug resistance
profiles; and (iii) optional, phylogenetic tree for the set of bacterial strains. Typically the set
of mutation profiles is generated using eCAMBer, which is able to download the genome
sequences and annotations for the set of bacterial strains, identify point mutations based
on multiple alignments, and reconstruct the phylogenetic tree of the considered bacterial
strains. Assuming the genotype data is preprocessed, the first step of GWAMAR is to
compute binary mutation profiles for all the mutations. This step significantly reduces the
number of profiles considered. Finally, GWAMAR implements several statistical scores to
associate drug resistance profiles with mutation profiles. These include: mutual informa-
tion, odds ratio, hypergeometric score, weighted support, tree-generalized hypergeometric
and the Rank-based metascore. As a result, we obtain ordered lists of drug resistance
associations, where the top-scored associations are the most likely to be real.

• SI
1 = {S ∈ S : b(S) = ’1’ ∧ r(S) = ’I’},
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• SI
0 = {S ∈ S : b(S) = ’0’ ∧ r(S) = ’I’},

• SS
1 = {S ∈ S : b(S) = ’1’ ∧ r(S) = ’S’},

• SS
0 = {S ∈ S : b(S) = ’0’ ∧ r(S) = ’S’},

• SS = {S ∈ S : r(S) = ’S’},

• SR = {S ∈ S : r(S) = ’R’}.

• SI = {S ∈ S : r(S) = ’I’}.

• S0 = {S ∈ S : b(S) = ’0’},

• S1 = {S ∈ S : b(S) = ’1’}.

Note that, instead of using mutation profiles, we use binary mutation profiles.

1.2.2.1 Odds ratio

For a given binary mutation profile b and drug resistance profile r, we calculate
odds ratio (OR) score using the following formula:

OR(b, r) =
|SR

1 | · |SS
0 |

max(1, |SR
0 |) ·max(1, |SS

1 |)
(1.5)

Here, we use the max function in the denominator to ensure there is no problem
with divisibility by 0.

1.2.2.2 Mutual information

For a given binary mutation profile b and a given drug resistance profile r, we
calculate mutual information (MI) score using the following formula:

MI(b, r) =
∑

x∈{’0’,’1’}

∑
y∈{’S’,’I’,’R’}

|Sy
x |
|S|
· log( |S

y
x | · |S|

|Sx| · |Sy|
) (1.6)
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1.2.2.3 Hypergeometric score

For a given binary mutation profile b and a given drug resistance profile r, we
calculate hypergeometric (H) score using the following formula:

H(b, r) = −log
( |S|∑
i=|SR|

H(|S|, |SR|, |S1|, i)
)

(1.7)

where:

H(N,K, n, k) =

(
K
k

)
·
(
N−K
n−k

)(
N
n

) (1.8)

Here, we define the hypergeometric score as a minus logarithm of the value
typically used in the definition of the hypergeometric test. We use this approach
in order to have consistent property for all considered scoring methods, such
that the higher the score the more likely drug resistance profile is associated
with binary mutation profile.

1.2.2.4 Support

For a given binary mutation b and a given drug resistance profile r, we define
support (S) as the number of drug-resistant strains with the mutation present
minus the number of drug-susceptible strains with the mutation present:

S(b, r) = |SR
1 | − α(r)|SS

1 |, (1.9)

where:

α(r) =
|SR|
|SS|

(1.10)

Here α(r) is a weight which we use to punish mutations for their presence in drug-
susceptible strains. It is defined as the proportion of the number of drug-resistant
to the number of drug-susceptible strains, so that occurrences of a mutation are
given equal emphasis in drug-resistant and drug-susceptible strains.
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1.2.2.5 Weighted support

Although the support is a simple and intuitive score, it does not incorporate
any phylogenetic information. For example, let us assume there are two point
mutations with the same support 3, where the first mutation covers only drug-
resistant strains within one subtree of the phylogenetic tree, whereas the second
mutation covers the same number of strains but spread throughout the whole
tree. The first mutation is likely to be associated with the phylogeny, driven
by some environmental changes. This suggests that the second mutation should
have a greater score as it has to be acquired a few times independently during
the evolution process.

We propose weighted support (WS) as a score to account for the above sit-
uation. For a given phylogenetic tree T , drug resistance profile b, and binary
mutation profile b, WS is defined as follows:

WST (b, r) =
∑
S∈S

wT (b, r, S)[b(S) = ’1’] (1.11)

where wT (b, r, S) is a weight assigned to each cell in a given drug resistance
profile.

The weights are assigned in the following way: all drug-susceptible strains
are assigned weight −α(r) (defined as above); each drug-resistant strain S is
assigned a weight 1

n
, where n is the number of drug-resistant strains in the subtree

(containing strain S) determined by its highest parental node, such that the
subtree does not contain any drug-susceptible strain in its leaves. All strains
without drug resistance information are assigned weights 0.

Note that the support score can also be expressed as weighted support, where
wT (b, r, S) are assigned as −α(r), 1, 0 for drug-susceptible, drug-resistant and
strains without drug resistance information, respectively.

Figure 1.2 illustrates the concept of support and weighted support.
In order to make the support scores more comparable between drugs, we in-

troduce normalized versions of the scores, normalized support and normalized
weighted support which denote the respective support value divided by the max-
imal possible support or weighted support, respectively.
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Drug resiatnce profile S R S R ? ? S R R R R

mutation1 0 0 0 0 1 0 0 1 1 1 1

mutation2 1 0 0 0 0 1 0 1 1 1 1

mutation3 0 0 0 0 0 0 0 0 1 1 1

mutation4 0 1 0 0 0 0 0 1 0 0 0
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3

3

2

a)
SupportDrug resistance profile S R S R ? ? S R R ? R

mutation1 0 0 0 0 0 0 0 1 1 1 1

mutation2 1 0 0 0 0 1 0 1 1 1 1

mutation3 0 0 0 0 0 1 0 0 0 1 0

mutation4 0 1 0 1 0 0 0 1 0 0 0

3

1.33

0

3

a)
Support

Figure 1.2: A schematic example of several mutation profiles and computation of their
supports. Light blue circles mark nodes which appear in the definition of weighted support.
These are nodes the highest parental nodes (for the leaf nodes corresponding to drug-
resistant strains), that their subtrees do not contain any drug-susceptible strains in leaves.
The scores (a) support and (b) weighted support are assigned to these mutations. For this
drug-resistance profile, the ratio α(r) equals 5

3 .

Statistical significance for WS In order to assess statistical significance
of the associations we calculate their p-values.

More precisely, for a given drug resistance profile v, let X be the random vari-
able giving support of a random mutation. Then, for a given observed mutation
with Support = c, its p-value is defined by the following formula:

P(X ≥ c) =

|S|∑
n=1

P(X ≥ c|N = n) · P(N = n) (1.12)

Here, N is a random variable which denotes the number of mutated strains
in a random mutation. For each n the probability P(N = n) of observing a
mutation present in n strains is estimated (as the number of mutations present
in n strains to the total number of considered mutations) from the data for point
mutation and gene gain/loss profiles separately. The details follow. Assume that
weights, for a given drug resistance profile v, take k different values: l1, l2, . . . , lk.
For 1 ≤ j ≤ k, let mj be the number of strains which take value lj. Clearly we
have m1 + m2 + . . . + mk = |S|. Then, the probability P(X ≥ c|N = n) (from
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the equation 1.12) is given by the formula:

∑
0≤n1≤m1
0≤n2≤m2

...
0≤nk≤mk

n1+n2+...+nk=n

∏k
j=1

(
mj

nj

)(|S|
n

) [ k∑
j=1

nj · lj ≥ c
]

(1.13)

Here we describe our algorithm for calculating the p-value. It should be clear
that the problem reduces to computing P(X ≥ c|N = n) = tc(n)

(|S|
n )

for each 0 ≤
n ≤ |S|, where tc(n) denotes the number of ways for distributing n ones over |S|
strains, such that the corresponding sum of weights is greater or equal than c.
The term

(|S|
n

)
is the total number of possible ways for distributing n ones over

|S| strains. Thus, the problem reduces to calculating tc(n) for each 0 ≤ n ≤ |S|.
Additionally, without any loss of generality, we may assume that the weight levels
are strictly decreasing: l1 > l2 > . . . > lk, where lk < 0 and lk−1 ≥ 0.

The algorithm iteratively generates partial combinations (without nk) start-
ing from the partial combination (n1 = m1, . . . , nk−1 = mk−1) in the follow-
ing manner: if j is the highest index of the non-zero ni in the current par-
tial combination, the next partial combination will be (n1, . . . , nj − 1, nj+1 =

mj+1, . . . , nk−1 = mk−1). The algorithm terminates generating partial combina-
tions when two 1following partial combinations have their corresponding sum
of weights below the level of c. At each step of the algorithm, all possible full
combinations (n1, . . . nk−1, nk) are generated from the current partial combina-
tion (n1, . . . nk−1). If for the full combination its corresponding sum of weights
is greater or equal c (

∑k
i=1 ni · li ≥ c), then we increment the value tc(n) by∏

i = 1k
(
mi

ni

)
, where n = n1 + . . . + nk. As the outcome, we obtain tc(n) and,

thus, also P(X ≥ c|N = n) for each n.
The last step is to calculate formula 1.12 using these calculated probabilities.
Note that, since support is a special case of weighted support, the same formula

and algorithm can be used to compute its corresponding p-values.

1.2.2.6 Tree-generalized hypergeometric score

As a part of this work, we also introduce a new association score, called tree-
generalized hypergeometric (TGH) score, which is conceptually similar to the
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CCTSWEEP score proposed by Habib et al. (2007).
We consider a set of bacterial strains S with its rooted phylogenetic tree T ,

whose leaves correspond to the strains in S. Let VT denote the set of all nodes
(internal and leaves) in T . Let additionally, function PT : VT ⇒ VT ∪{null}, for a
given ω ∈ VT , return its parent node; or null for the root node. Let also function
CT , for a given node ω ∈ VT , return the set of its immediate child nodes.

We also introduce function LT which, for each node ω in T , returns the subtree
of descendants of the node, including the node itself. We say these nodes are
visible from ω. Additionally, the function LT applied to any subset c of VT returns
the union of all nodes visible from nodes in the set. More formally, LT (c) =∪

ω∈VT
LT (ω).

In order to present the formal definition of TGH, we first define some auxiliary
concepts.

Let r : VT → {’?’, ’S’, ’R’} denote the tree-extended resistance profile defined
recursively as follows:

r(ω) =


r(S) if ω is a leaf node corresponding to strain S

’S’ ∃ω′∈CT (ω)r(ω
′) = ’S’

’R’ ¬∃ω′∈CT (ω)r(ω
′) = ’S’ ∧ ∃ω′∈CT (ω)r(ω

′) = ’R’
’?’ otherwise

(1.14)

Analogously, let b̂ : VT → {’?’, ’0’, ’1’} denote the tree-extended binary muta-
tion profile defined recursively as follows:

b̂(ω) =


b(S) if ω is a leaf node corresponding to strain S

’0’ ∃ω′∈CT (ω)b̂(ω
′) = ’0’

’1’ ¬∃ω′∈CT (ω)b̂(ω
′) = ’0’ ∧ ∃ω′∈CT (ω)b̂(ω

′) = ’1’
’?’ otherwise

(1.15)

For a given tree T , we call a subset c of its nodes a coloring, if it satisfies the
following two conditions:

(A) each path from a leaf to the root contains at most one node from c,

(B) each internal node in T has at least one immediate child node which does
not belong to c.
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We call a coloring c induced by a given drug resistance profile r, if it contains
the set of nodes in which drug resistance was acquired. More formally, we define
a coloring induced by a drug resistance profile r, using its corresponding tree-
extended resistance profile r, as:

c = {ω ∈ VT : r(ω) = ’R’ ∧
(
PT (ω) = null ∨ r(PT (ω)) = ’S’

)
}. (1.16)

Analogously, we call a coloring ĉ induced by a given binary mutation profile
b, if it contains the set of nodes in which the mutation was acquired. More
formally, we define a coloring induced by a binary mutation profile b, using its
corresponding tree-extended mutation profile b̂, as:

ĉ = {ω ∈ VT : b̂(ω) = ’1’ ∧
(
PT (ω) = null ∨ b̂(PT (ω)) = ’0’

)
}. (1.17)

Figure 1.3 (A) presents an example of colorings induced by a given drug resis-
tance profile (large red nodes) and a given binary mutation profile (small orange
nodes) for a flat tree. Figure 1.3 (B) presents another example of colorings in-
duced by the same pair of profiles, but for a tree which is not flat. In this model
the dependencies between different strains are captured by the topology of the
tree.

Wω(n) = #{c ∈ CT (ω) : |c| = n} (1.18)

Here, CT (ω) denotes the set of all colorings of LT (ω). We denote by WT (n), the
value of Wω(n) for the root node ω in T .

We also define Bω,c(k, n) as the number of colorings of size n, such that exactly
k nodes of that coloring are visible from nodes of coloring c. More formally,

Bω,c(k, n) = #{c ∈ CT (ω) : |LT (c) ∩ c| = k ∧ |c| = n} (1.19)

We denote by BT,c(k, n) the value of Bω,c(k, n) for the root node ω in T .
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Drug resistance profile R R R S S R R

Binary mutation profile 1 1 0 0 0 0 1

A)

B)

Drug resistance profile R R R S S R R

Binary mutation profile 1 1 0 0 0 0 1

S,0

R,1 S,0 R,0

S,0

Figure 1.3: (A) an example of a pair of a drug resistance profile and a binary muta-
tion profile. Values of the corresponding tree-extended binary mutation profile, and the
corresponding tree-extended drug resistance profile are shown next to the nodes. Nodes
belonging to the coloring induced by the drug resistance profile c are indicated by large red
nodes, whereas nodes belonging to the coloring induced by the binary mutation profile ĉ
are indicated by small orange nodes. In this example |c| = 5, |ĉ| = 3 and |LT (c) ∩ ĉ| = 3.
(B) colorings c and ĉ induced by the same pair of profiles but for a different tree. In this
example |c| = 3, |ĉ| = 2 and |LT (c) ∩ ĉ| = 2.

Finally, for a drug resistance profile r and a binary mutation profile b, we denote
the colorings induced by the profiles as c and ĉ, respectively. Let additionally,
n = |c| and k = |L(c) ∩ ĉ|. Then, we finally define the TGH score, as follows:

TGHT (r, b) = −log
(∑n

i=k BT,c(i, n)

WT (n)

)
. (1.20)

We take the negative logarithm to have consistent property, with other scoring
methods, such that the higher the score the more likely drug resistance profile r

is associated with binary mutation profile b.

The algorithm for TGH Here we describe the algorithm we use to compute
the TGH score for a set of pairs of drug resistance profiles and binary mutation
profiles.
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Naturally, for each leaf node ω in T , two colorings exist: c1 = {ω}, c2 = ∅. The
following lemma 1 characterizes colorings for internal nodes of T .

Lemma 1. Let ω be an internal node in T with l immediate child nodes (ω1, . . . ωl).
Let c be a subset of VT . Then, c is a coloring of LT (ω) if and only if c = {ω} or(
ω /∈ c and c ̸= {ω1, . . . ωl} and c∩LT (ωi) is a coloring of LT (ωi), for each ωi

)
.

Proof. ⇒: Proof by contradiction. Let us assume c ̸= {ω}. If c = {ω1, . . . ωl},
then c contradicts with the (B) condition of the definition of a coloring. Thus,
there exists ωi, such that, c∩LT (ωi) does not satisfy (A) or (B). Since c∩LT (ωi)

is a subset of c, c also violates the corresponding (A) or (B) condition. Hence, it
contradicts with our assumption that c is a coloring.
⇐: naturally, {ω} satisfies both (A) and (B). Otherwise, ince ω /∈ c, c =

∪
ωi
c ∩

LT (ωi). Thus, c satisfies (A). The condition (B) is satisfied unless c ∩ LT (ωi) =

{ωi}, but this case is excluded as a separate case.

Based on the proposition 1 we can derive the following recursive formulas for
Wω(n). If ω is a leaf node in T , then:

Wω(n) = [n = 0] + [n = 1] (1.21)

If ω is an internal node in T , then:

Wω(n) = [n = 1]︸ ︷︷ ︸
c={ω}

− [n = l]︸ ︷︷ ︸
{ω1,...,ωl} is not a coloring

+
∑

0≤n1≤n,...,0≤nl≤n
n1+...+nl=n

l∏
i=1

Wωi
(ni) (1.22)

Similarly, we can derive the recursive formulas for Bω,c(k, n). If ω is a leaf node
in T , then:

Bω,c(k, n) = [n = 1 ∧ k = 1 ∧ c = {ω}]
+[n = 1 ∧ k = 0 ∧ c ̸= {ω}]
−[n = l ∧ k = |L(c) ∩ {ω1, . . . , ωl}|]

(1.23)
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If ω is an internal node in T , then:

Bω,c(k, n) = [n = 1 ∧ k = 1 ∧ c = {ω}]
+[n = 1 ∧ k = 0 ∧ c ̸= {ω}]
−[n = l ∧ k = |L(c) ∩ {ω1, . . . , ωl}|]
+
∑

0≤n1≤n,...,0≤nl≤n
n1+...+nl=n

0≤k1≤n1,...,0≤kl≤nl
k1+...+kl=k

∏l
i=1 Bωi,c(ki, ni)

(1.24)

The pseudocode 1 presents the following steps of the algorithm to compute the
TGH score for each pair of drug resistance profile and binary mutation profile.
These steps, for a given drug resistance profile r, comprise: (i) simplification of
the input tree T ′ to T by removal of the leaves corresponding to the strains with
unknown drug resistance status (according to r); (ii) computation of the tree-
extended resistance profile r and its corresponding coloring c; (iii) computation
of the values of Wω(n) for each n and ω ∈ VT , following the recursive formulas
1.21 and 1.22 from the leaves to the root (dynamic programming technique);
(iv) computation of the values of Bω,c(k, n) for each k, n and ω ∈ VT , follow-
ing the recursive formulas 1.23 and 1.24, from the leaves to the root (dynamic
programming technique); (from leaves to the root); (v) for each binary mutation
profile b ∈ B, computation of the tree-extended binary mutation profile b̂ and its
corresponding coloring ĉ; and finally (vi) computation of the TGH score based
on formula 1.20.

Additionally, in order to speed up the computations of the and WT (n) and
BT,c(k, n) values we use the memorization technique to cache results depending
on the topology of a subtree. The subtree topologies, used as hashes, are repre-
sented as strings in the Nawick tree format enriched by the additional information
of belonging to c, for each node.

Also, due to high time complexity of the score with respect to the maximal
number of immediate children of a node, in all computational experiments we
calculate the actual TGH score as an average over TGH scores obtained for trees
generated by randomly binarizing the input tree.
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Algorithm 1 Pseudocode for computing the TGH score
Require: A set S of bacterial strains; with a phylogenetic tree T ′, a set of binary

resistance profiles R, and a set of binary mutation profiles B. The function
simplify removes a node ω from the tree T ′ if the strains corresponding to
the set of leaves visible from ω have all unknown drug resistance status in r.
After this step, it removes all internal nodes of degree one.

1: for all r ∈ R do
2: T ← simplify(r, T ′)
3: compute the tree-extended resistance profile r for r in T
4: compute the coloring c induced for r in T
5: compute Wω(n) bottom-up for every n and ω ∈ VT , following the 1.21 and

1.22 formulas
6: compute Bω,c(k, n) bottom-up for every k, n and ω ∈ VT , following the

1.23 and 1.24 formulas
7: for all b ∈ B do
8: compute the tree-extended mutation profile b̂ for b in T
9: compute the coloring ĉ for b̂ in T

10: n← |ĉ|
11: k ← |LT (c) ∩ ĉ|
12: TGH← −log

(∑n
i=k BT,c(i,n)

WT (n)

)
13: end for
14: end for{These computations are done in parallel for each drug resistance

profile r ∈ R}
15: return TGH score for each pair r ∈ R and b ∈ B.

1.2.2.7 Rank-based metascore

Finally, we introduce an association score, called Rank-based metascore (RBM),
which combines a set of scores into a new score. This approach is based on the
natural assumption that each individual score has its own good and weak points.
Thus, RBM tries to compromise between the different approaches used to define
different scores. This score is based on rankings after sorting with accordance to
the scores being combined, rather than the absolute values of the scores.

Let S1, S2, . . . , Sk denote the set of different scores to be combined with RBM.
Then, for a given binary mutation profile b ∈ B and resistance profile r ∈ R, the
score is defined as the sum of average rankings of b with accordance to scores in

22



question. More formally,

RBM(S1, . . . , Sk)(b, r) =
k∑

i=1

rankSi
u (b, r) + rankSi

d (b, r)

2
. (1.25)

Here, rankSi
u (b, r) denote the highest ranking of the binary mutation profile

with the same Si score as b, which is the number of binary mutation profiles with
the Si score higher than b plus 1, more formally:

rankSi
u (b, r) = #{b′ ∈ B : Si(b

′, r) > Si(b, r)}+ 1. (1.26)

Analogously, we define rankSi
d (b, r) as the lowest ranking of the binary mutation

profile with the same Si score as b, which is the number of binary mutation profiles
with the Si score higher or equal than b, more formally:

rankSi
d (b, r) = #{b′ ∈ B : Si(b

′, r) ≥ Si(b, r)}. (1.27)

Note that, if each binary mutation profile has a different score, the formula
rankSi

u (b,r)+rankSi
d (b,r)

2
simplifies to return the ranking of b on the sorted list of binary

mutation profiles with respect to the score Si.

In order to compute the RBM, assuming all the individual scores are already
computed, we sort the lists of mutations for each individual score and drug
resistance profile r, separately. Then we compute the ranku and rankd mappings.
Finally, we compute the actual RBM.

Note that, unlike the other scores presented in this work, here, the lower the
value of the score the higher the chance the association is real. This definition of
RBM is consistent with the current implementation of the score.

In the thesis we consider three versions of the score: (i) combining all the
tree-ignorant scores, denoted: RBM (MI,OR,H); (ii) combining WS and TGH,
denoted RBM (WS,TGH); and combining (iii) all the five individual scores, de-
noted RBM (MI,OR,H,WS,TGH) and also shortly RBM (ALL). Note that RBM
(MI,OR,H) can be categorized as tree-ignorant score, whereas RBM (WS,TGH)
and RBM (ALL) as tree-aware.
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1.2.3 Time complexity

Let D denote the number of drug resistance profiles considered. Additionally,
let N denote the number of considered strains and M denote the number of
binary mutation profiles. Finally, let K denote the maximal number of children
of an internal node in the tree. Then, the time complexity of the algorithms we
implemented to compute the hypergeometric score, the mutual information, odds
ratio, and weighted support is O(D ·N ·M).

In order to compute the TGH score for the input tree T , based on the formulas
1.23 and 1.24, we implement the dynamic programming algorithm to compute
bottom-up the values Bω,c(k, n) for each internal node ω in T , k and n. The
time complexity of computing these values for all the nodes is O(·N2·(K−1) ·
N). Similarly, based on the recursive formulas 1.21 and 1.22,we implement the
dynamic programming algorithm to compute bottom-up the values Wω(n) for all
nodes in T and n. The time complexity of this step is O(·N ·(K−1) ·N).

This strategy gives the algorithm to compute the TGH score with time com-
plexity O(D ·N2·(K−1) ·N +D ·N ·M) which simplifies to O(D ·N · (M +N2))

for binary trees.
The time complexity of the algorithm to compute the RBM for a set of E

individual scores, assuming the scores are already computed, is O(D · E ·M).
Note that the time complexity does not depend on the number of strains N .

1.3 Results and Discussion

Here we present the results of applying GWAMAR to three datasets. One for
S. aureus and two for M. tuberculosis.

1.3.1 S. aureus dataset

We first discuss the computational experiment on the dataset of 100 S. aureus
strains. We use this case study to show the usability of GWAMAR to identify
genes associated with drug resistance.

1.3.1.1 Genotype data

We collected genotype data (genome sequences and annotations) for 100 fully se-
quenced strains of S. aureus from the GenBank (Benson et al., 2013) and PATRIC
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databases (Gillespie et al., 2011). Additionally, genotype data for strain EMRSA-
15 were downloaded from the Wellcome Trust Sanger Institute website. At the
time of writing, 31 out of the 100 S. aureus strains had the sequencing status
“completed”. For the remaining strains whose genomes were still being assem-
bled, contig sequences (covering around 90% of the genomes) and annotations
were used.

We unified the original genome annotations employing CAMBer. However, in
order to determine gene families we additionally extended the multigene consol-
idation graph by edges coming from BLAST amino-acid queries. More formally,
we added an edge between a pair of genes to the consolidation graph if the per-
cent of identity (calculated as the number of identities over the length of the
longer gene) of the BLAST hit between them exceeded a threshold P (L) given
by the HSSP curve formula (Rost, 1999):

P (L) =


100 L≤11

c+480·L−0.32·(1+e−L/1000) 11<L≤450

c+19.5 L>450

(1.28)

Here, c was set to 40.5 and L is the number of aligned amino-acid residues.
Then, each connected component in the multigene consolidation graph corre-

sponds to a gene family. We computed multiple alignments using MUSCLE (Edgar,
2004) for all these gene families.

In this work, unlike in the current version of GWAMAR, we considered two
kinds of genetic variations (mutations):

• gene gain/losses,

• point mutations (in amino-acid sequences).

In comparison to the current version of GWAMAR, we did not take into ac-
count mutations in gene promoter regions. Here, point-mutation profiles are
transformed from columns in multiple alignments computed for gene families
with elements present in at least |S| − 1 strains.
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1.3.1.2 Phylogenetic tree of the strains

We computed the phylogenetic tree of the input strains using a consensus method
with majority rule implemented in the PHYLIP package, developed by Felsen-
stein (2005). We applied the consensus method to trees constructed for all gene
families with exactly one element in each strain. The trees were constructed using
the maximum likelihood approach implemented in the PHYLIP package.

1.3.1.3 Phenotype data (drug susceptibility)

We performed a careful search of the literature for results of drug susceptibility
tests of the strains considered. The drug susceptibility data were collected from
the following sources: (i) 25 publications issued together with the fully sequenced
genomes; (ii) NARSA project (http://www.narsa.net); (iii) email exchange with
the authors of publications related to strains ST398 and TW20; and (iv) other
publications found by searching related literature. In total we used 71 publica-
tions to retrieve the drug resistance information.

1.3.1.4 Assessment of accuracy

We verified the usability of our approach by trying to re-identify known drug
resistance determinants. In this experiment, we compared the proposed scoring
— support and weighted support— to odds ratio, which is a popular measure
used in genome-wide association studies. Table 1.1 shows rankings of the gene-
gain/-loss profiles for genes which are known drug resistance determinants. The
experiment suggests that weighted support outperforms both: support and odds
ratio. The latter two scores do not incorporate additional information about
phylogeny

1.3.1.5 Prediction of resistance

This experiment also reveals that the amount of the collected drug resistance
information is not sufficient to correctly identify drug resistance-associated genes.
However, the high consistency of drug resistance profiles corresponding to the
collected information and the presence of drug resistance determinants (summing
over drugs, there are 117 drug-resistant strains, where only 4 of them do not
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Rankings before prediction Rankings after prediction

gene id. drug name S WS OR S WS OR

tet tetracycline 54.5 2.5 43.7 1.5 1.5 1.5
tetM tetracycline 14.5 11.5 7.5 4 4 4
mecA methicillin 1 1 1 1 1 1
mecA oxacillin 3 4 2 1 2 1
ermA1 clindamycin 5.5 5.5 5.5 1 1 1
ermC clindamycin 907 471 907 414.5 11 191.5
ermA1 erythromycin 3 3 4 1 1 1
ermC erythromycin 1527 3994.5 1006.5 413.5 28 214.5

aacA-aphD gentamicin 72 34 34 1 1 1
blaZ penicillin 163 66 223 1.5 1 2.5
mecA penicillin 163 8 223 11 5 52

Average ranking (excluding ermC): 53.27 15.05 60.411 2.55 1.94 7.22

Table 1.1: Rankings of the known drug resistance determinants obtained by employing
three different methods to score gene-gain/-loss profiles: support (S), weighted support
(WS) and odds ratio (OR). Since some of the gene-gain/-loss profiles are assigned with
the same score, we calculate their rankings as the arithmetic mean of positions of the profiles
with the same score on the list sorted according to the scores; thus some of the rankings
are not round numbers. The rankings were computed before and after prediction of drug
resistance, which is based on the presence of drug resistance determinants. We excluded
the gene ermC from the calculations of average rankings since none of the methods were
able to pull it out into the top 100 before prediction.

have any known drug resistance determinants; and there are 112 drug-susceptible
strains, where only 8 of them have at least one drug resistance determinant)
suggests that we can use the determinants to predict drug resistance in the
strains without drug resistance information available.

It is perhaps questionable to predict drug resistance in those strains for which
the whole-genome sequence is not determined yet. So we did prediction only for
those strains with completed sequencing or at least information on their plasmids
(which often carry the drug resistance determinants). Nevertheless, we predicted
drug resistance also for those strains that were not yet fully sequenced, provided
the presence of drug resistance-determining genes had been confirmed for them.
Moreover, we predicted drug resistance to rifampicin and ciprofloxacin for all 100
strains, as the drug resistance for rifampicin and ciprofloxacin is determined by
point mutations in genes rpoB, gyrA and grlA (synonymous name to parC), which
were sequenced in all strains. More precisely, we predicted as rifampicin-resistant
all strains with any mutation present in the rifampicin resistance determining re-
gion (RRDR). We defined the RRDR as the amino-acid range from 463 to 530
in the rpoB gene sequence (according to (O’Neill et al., 2006)). Analogously,
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we predicted as ciprofloxacin-resistant all strains with any point mutation in
the quinolone resistance determining region (QRDR). We defined QRDR as the
amino-acid ranges from position 68 to 107 and from position 64 to 103 in the
grlA and parC gene sequences, respectively (according to (Ferrero et al., 1995)).
Figure 1.4 shows the complete information about drug susceptibility after pre-
diction.

Figure 1.4: The collected dataset of phenotypes put together with results of our drug re-
sistance predictions based on the presence of known drug resistance determinants. Due to
the high number of strains the table is split into two panels. Columns represent drugs, rows
represent S. aureus strains included in the study in the order corresponding to the recon-
structed phylogenetic tree of strains. Green, yellow and red cell colors represent susceptible,
intermediate resistant and resistant phenotypes, respectively. Analogously, light green and
light red cell colors represent predicted susceptible and resistant phenotypes, respectively.
White cell color represents unknown (not determined by experiments or prediction) drug
resistance phenotypes.
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1.3.1.6 Essential mutations

Here, we distinguish two categories of gene-gain/-loss and point-mutation pro-
files depending on how they correspond to a given drug resistance profile. We
categorize a given mutation profile m as:

• Essential mutation, when m is absent in all drug-susceptible strains,

• Conflict mutation, when m is present in at least one drug-susceptible strain.

Further, we distinguish neutral mutations as a subclass of essential mutations,
these are essential mutations that are not present in any of drug-resistant strains.
Thus, neutral mutations may only be present in strains with unknown drug-
resistance status.

Analogously, we transfer the above introduced concepts to gene-gain/-loss pro-
files, defining essential, neutral and conflict gene-gain/-loss profiles.

1.3.1.7 Detection of drug resistance-associated mutations

Then, we applied our approach to the dataset supplemented by the predicted
information about drug susceptibility for the following drugs: tetracycline, β-
lactams (penicillin, oxacillin, methicillin), erythromycin, gentamicin, vancomycin,
ciprofloxacin and rifampicin.

Below we discuss the results of our approach applied separately to the following
drugs: tetracycline, β-lactams (penicillin, methicillin), erythromycin, gentamicin,
vancomycin, ciprofloxacin. We do not discuss here results for oxacillin and clin-
damycin, since they have very similar drug resistance profiles to methicillin and
erythromycin, respectively. All other drugs were excluded from the analysis due
to low number of strains with available drug resistance information on these
drugs.

Tables 1.2 and 1.3 present the top-scored gene-gain/-loss, and point-mutation
profiles for the discussed drugs, respectively. The genes presented in the tables
were selected according to the following procedure: for each drug we construct
a function, which gives for each gene (listed in descending order with respect to
normalized weighted support) minus logarithm of p-value (−log(p-value)) of this
score. Then, we report genes which correspond to the portion of the graph of
this function before it gets flattened.
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Gene identifier NS NWS OR p-value Gene functional annotation

Penicillin (NWS-threshold: 0.58)

⋆ SAR1831(blaZ) 0.84 0.81 37.15 1.15e-06 beta-lactamase
SAR1829(blaI) 0.84 0.74 37.15 5.24e-06 transcriptional repressor

SAR1830(blaR1) 0.82 0.73 31.27 7.09e-06 beta-lactamase regulatory protein blar1
SAR0056 0.63 0.71 12.13 1.03e-05 conserved hypothetical protein

⋆ SAR0039(mecA) 0.61 0.70 10.94 1.28e-05 methicillin resistance determinant mecA
SAR0060(ccrA) 0.61 0.63 10.94 4.40e-05 resolvase, n-terminal domain protein
SAR0061(yycG) 0.61 0.63 10.94 4.40e-05 putative membrane protein

NWMN 0025 0.57 0.63 9.40 4.41e-05 conserved domain protein
SAR0037(ugpQ) 0.60 0.63 10.39 5.08e-05 glycerophosphoryldiester phosphodiesterase
SAR0038(maoC) 0.60 0.63 10.39 5.08e-05 dehydratase

SAR0057 0.57 0.59 9.40 9.78e-05 conserved hypothetical protein

Methicillin (NWS-threshold: 0.68)

⋆ SAR0039(mecA) 1.00 1.00 950.00 4.48e-20 methicillin resistance determinant mecA
SAR0037(ugpQ) 0.98 0.94 931.00 6.77e-15 glycerophosphoryldiester phosphodiesterase
SAR0038(maoC) 0.98 0.94 931.00 6.77e-15 dehydratase

SAR0056 0.95 0.85 900.00 7.55e-12 conserved hypothetical protein
SAR0036 0.64 0.80 33.78 5.77e-11 putative membrane protein
SAR0057 0.85 0.75 162.00 6.47e-10 conserved hypothetical protein

SAR0060(ccrA) 0.91 0.73 432.00 1.40e-09 resolvase, n-terminal domain protein
SAR0061(yycG) 0.91 0.73 432.00 1.40e-09 putative membrane protein
MW0028(ebpS) 0.54 0.71 22.30 2.76e-09 hmg-coa synthase

Tetracycline (NWS-threshold: 0.32)

SAAV b3(repC) 0.54 0.64 27.69 5.70e-08 plasmid replication protein
⋆ SATW20 00660(tet) 0.54 0.64 27.69 5.70e-08 tetracycline resistance protein
SATW20 00670(pre) 0.50 0.50 24.00 3.51e-06 plasmid recombination enzyme type 3

⋆ SATW20 04620(tetM) 0.46 0.37 20.80 7.54e-05 tetracycline resistance protein tetM
SATW20 08990(virE) 0.42 0.37 19.93 7.67e-05 pathogenicity island protein

SATW20 09000 0.42 0.37 19.93 7.67e-05 pathogenicity island protein
SATW20 09010(lipA) 0.42 0.37 19.93 7.67e-05 superantigen-encoding pathogenicity islands
SATW20 04610(thiI) 0.43 0.35 18.00 1.32e-04 putative transcriptional regulator

MW0745(int) 0.25 0.32 8.00 2.28e-04 site-specific recombinase, phage integrase
MW0747 0.25 0.32 8.00 2.28e-04 DNA-binding helix-turn-helix protein

Erythromycin (NWS-threshold: 0.27)

⋆ SAR0050(ermA1) 0.80 0.58 76.00 1.36e-06 rRNA adenine n-6-methyltransferase
CGSSa03 12660 0.47 0.44 17.19 2.98e-05 conserved hypothetical protein

SAR0054(tnpA1) 0.75 0.39 72.00 8.12e-05 transposase for transposon
SAR1734 0.75 0.39 72.00 8.12e-05 methylase

SAR1736(spc2) 0.75 0.39 72.00 8.12e-05 spectinomycin 9-o-adenylyltransferase
SaurJH9 1711(radC) 0.72 0.38 62.00 8.83e-05 predicted protein

SAUSA300 pUSA030006 0.20 0.35 4.75 1.65e-04 replication and maintenance protein
SAR1737(tnpC2) 0.72 0.34 62.00 1.89e-04 Unknown

SAR1529 0.33 0.33 9.15 2.43e-04 conserved hypothetical protein
SATW20 04860(recF 1) 0.23 0.30 5.52 3.67e-04 recombinational DNA repair ATPase

SAR1738(tnpB2) 0.70 0.29 54.00 4.39e-04 transposase B from transposon Tn554
SauraJ 010100009720 0.23 0.27 5.52 6.60e-04 conserved domain protein

Gentamicin (NWS-threshold: 0.83)

⋆ SaurJH1 2806(aacA-aphD) 0.83 0.90 150.00 9.38e-11 bifunc. acetyltransferase/phosphotransferase
SaurJH1 2805 0.75 0.83 90.00 2.95e-09 GNAT family acetyltransferase

Ciprofloxacin (NWS-threshold: 0.4)

SATW20 04610(thiI) 0.35 0.45 36.00 1.33e-07 putative transcriptional regulator
SATW20 04650(cap8J) 0.32 0.40 31.57 8.25e-07 lipoprotein
SATW20 04670(capL) 0.32 0.40 31.57 8.25e-07 putative ATP/GTP-binding protein

SATW20 04780 0.32 0.40 31.57 8.25e-07 conjugation related protein
SATW20 04800 0.32 0.40 31.57 8.25e-07 replication initiation factor
SATW20 04810 0.32 0.40 31.57 8.25e-07 DNA segregation ATPase FtsK/SpoIIIE
SATW20 04830 0.32 0.40 31.57 8.25e-07 conjugative transposon protein

Table 1.2: Summarizing information for the top scored gene-gain/-loss profiles. The con-
sequent columns refer to: gene identifier of the corresponding gene family; normalized
support (NS); normalized weighted support (NWS); odds ratio (OR); p-value and the
gene functional annotation. Thresholds for weighted support are provided in brackets for
each drug.

Tetracycline Tetracycline acts by binding to the 30S ribosomal subunit (16S
rRNA and the protein encoded by the gene rpsS are its direct targets), preventing
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Gene identifier desc. NS NWS OR p-value Gene functional annotation

Penicillin (NWS-threshold: 0.4)

SAR0023(sasH) G723D 0.55 0.63 8.51 1.87e-05 virulence-associated cell-wall-anchored protein
SAR0023(sasH) T725A 0.54 0.62 8.11 2.23e-05 virulence-associated cell-wall-anchored protein

SAR0304 V295I 0.39 0.49 4.48 3.25e-04 acid phosphatase
SAR2791 V182M 0.46 0.46 6.05 5.41e-04 transcriptional regulator, Xre family
SAR2700 N493KD 0.52 0.45 7.72 6.16e-04 ABC transporter permease protein

SAR0233(hmp) Q333K 0.44 0.44 5.48 7.21e-04 flavohemoprotein
SAR0318(sbnA) N25HK 0.44 0.43 5.48 8.36e-04 alpha/beta family hydrolase

SAR2664 V282AT 0.44 0.43 5.48 8.36e-04 probable monooxygenase
SAR2779 S48G 0.44 0.43 5.48 8.36e-04 n-hydroxyarylamine o-acetyltransferase

SAR0318(sbnA) T138IM 0.43 0.43 5.21 8.36e-04 alpha/beta family hydrolase
SAR0318(sbnA) T139AQ 0.43 0.43 5.21 8.36e-04 alpha/beta family hydrolase
SAR0023(sasH) A749TG 0.41 0.43 4.96 8.44e-04 virulence-associated cell-wall-anchored protein
SAR0318(sbnA) R130CG 0.41 0.43 4.96 8.72e-04 alpha/beta family hydrolase
SAR0322(folC) H201YQE 0.41 0.43 4.96 8.72e-04 possibly adp-ribose binding module
SAR0233(hmp) K323ET 0.40 0.42 4.71 9.08e-04 flavohemoprotein
SAR2750(icaC) I21V 0.40 0.42 4.71 9.46e-04 polysaccharide intercellular adhesin biosynthesis
SAR0233(hmp) S309RN 0.39 0.42 4.48 9.46e-04 flavohemoprotein

Methicillin (NWS-threshold: 0.25)

SAR0198(oppF) T287IK 0.10 0.29 2.11 1.41e-04 putative glutathione transporter, ATP-binding
SAR0420 I72F 0.10 0.29 2.11 1.41e-04 membrane protein

SAR2508(sbi) S219AT 0.10 0.29 2.11 1.41e-04 IgG-binding protein Sbi
SAR2508(sbi) N222QK 0.10 0.29 2.11 1.41e-04 IgG-binding protein Sbi
SAR2508(sbi) K224SDN 0.10 0.29 2.11 1.41e-04 IgG-binding protein Sbi

Tetracycline (NWS-threshold: 0.2)

SAR1840 D291YS 0.18 0.23 5.22 7.09e-04 NAD(FAD)-utilizing dehydrogenases
SAR2336(rpsJ) K57M 0.29 0.23 9.60 7.32e-04 SSU ribosomal protein S10P (S20E)
SAR0550(rpsL) K113R 0.36 0.20 13.33 1.14e-03 SSU ribosomal protein S12P (S23E)

Erythromycin (NWS-threshold: 0.2)

SAR0576 A68EV 0.07 0.21 1.54 8.89e-04 phosphoglycolate phosphatase

Gentamicin (NWS-threshold: 0.21)

SAR1840 L289IW 0.33 0.29 15.00 1.43e-03 NAD(FAD)-utilizing dehydrogenases
SAR1840 D291YS 0.33 0.29 15.00 1.43e-03 NAD(FAD)-utilizing dehydrogenases
SAR1840 H327RF 0.33 0.29 15.00 1.43e-03 NAD(FAD)-utilizing dehydrogenases

SAR1167(ylmH) K215N 0.25 0.29 10.00 1.43e-03 RNA-binding S4 domain-containing protein
SAR1167(ylmH) R216V 0.25 0.29 10.00 1.43e-03 RNA-binding S4 domain-containing protein
SAR1167(ylmH) V217L 0.25 0.29 10.00 1.43e-03 RNA-binding S4 domain-containing protein
SAR0547(rpoB) D471YG 0.17 0.21 6.00 4.61e-03 DNA-directed RNA polymerase beta subunit
SAR1833(trmB) T54IK 0.17 0.21 6.00 4.61e-03 tRNA (guanine46-n7-)-methyltransferase

Ciprofloxacin (NWS-threshold: 0.12)

SAR1367(grlA) S80YF 1.00 1.00 2244.00 6.03e-30 topoisomerase IV subunit a
SAR0006(gyrA) S90AL 0.94 0.88 1056.00 1.92e-18 DNA gyrase subunit a
SAR2449(lytT) V45I 0.21 0.20 17.11 2.06e-04 transcriptional regulator

SAR1840 L289IW 0.12 0.20 8.80 4.56e-04 NAD(FAD)-utilizing dehydrogenases
SAR1793(thiI) A92ET 0.09 0.20 6.39 2.06e-04 thiamine biosynthesis protein thiI

SAR2212(murA2) A102T 0.06 0.20 4.12 2.06e-04 UDP-n-acetylglucosamine 1-carboxyvinyltransferase
SAR1367(grlA) E84KG 0.26 0.15 23.76 9.40e-04 topoisomerase IV subunit a

SAR0235(pstG_1) F401LV 0.09 0.13 6.39 2.21e-03 PTS system, maltose and glucose-specific
SAR0400(nfrA) R194H 0.09 0.13 6.39 2.21e-03 nitroreductase family protein

Table 1.3: Summarizing information for the top scored point mutation profiles, only for
essential mutations. The conflict mutations were removed from the table for: tetracycline,
erythromycin and gentamicin (for the rest of drugs there were no conflict mutations above
the set thresholds). The consequent columns refer to: gene identifier of the corresponding
gene family; corresponding position in the multiple alignment and changed amino acids;
normalized support (NS); normalized weighted support (NWS); odds ratio (OR); p-value
(computed as described in section 1.2.2.5) and the gene functional annotation. Thresholds
for weighted support are provided in brackets for each drug.

binding of tRNA to the mRNA-ribosome complex, and thus inhibiting protein
synthesis (Knox et al., 2011).

The most common drug resistance mechanism to tetracycline in S. aureus is
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mediated by ribosome protection proteins (RPPs) such as tet and tetM , which
bind to the ribosome complex, thus preventing the binding of tetracycline (Chopra
and Roberts, 2001; Connell et al., 2003).

Genes tet and tetM , mediating this mechanism, cover all tetracycline-resistant
strains, except MW2. The drug resistance status pf MW2 may be caused by errors
in the drug susceptibility test, errors in sequencing, or by some not-yet-known
drug resistance mechanism. The inconsistent information about strain MW2’s
tetracycline susceptibility and the lack of identified drug resistance determinants
suggest that the strain is possibly drug susceptible. In our experiment we initially
assumed that the tetracycline resistance information is not available for strain
MW2.

Our method shows that, besides tet and tetM , there are a few more genes
that have highly scored gene-gain/-loss profiles. Especially interesting are the
following genes which are not gained by any of the drug susceptible strains: repC ,
pre, thiI , int, clfB (see Table 1.2). There are studies reporting the significance
of these clfB and repC genes in drug resistance (McAleese and Foster, 2003;
Werckenthin et al., 1996). Interestingly, the gene repC seems to co-evolve with
tet (highly correlated gene-gain/-loss profiles).

Applying our method to point mutations, we have identified two highly scored
(and essential) point mutations in ribosomal complex proteins: K101R in rpsL
and K57M in rpsJ . According to our knowledge, this is the first report on the
significance of the point mutations for drug resistance in S. aureus. However,
mutations in rpsJ have been associated with tetracycline resistance in another
bacteria Neisseria gonorrhoeae (Hu et al., 2005).

Beta-lactams Beta-lactams are a broad class of antibiotics, which possess
(by definition) the β-lactam ring in their structure. The ring is capable of binding
transpeptidase proteins (also known as Penicillin Binding Proteins — PBPs) (Knox
et al., 2011), which are important for synthesis of the peptidoglycan layer of bac-
terial cell wall. PBPs with attached drug molecules are no longer able to synthe-
size peptidoglycan, leading to bacterial death (Sabath, 1982). In our case study,
we consider three β-lactam antibiotics: penicillin, oxacillin and methicillin. How-
ever, since the drug resistance profile and drug resistance mechanisms for oxacillin
and methicillin are very similar we discuss results only for methicillin.

There are two common resistance mechanisms to β-lactams in S. aureus (Sabath,
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1982; Drawz and Bonomo, 2010). The first one is mediated by β-lactamase en-
zymes, which bind drug molecules and break the β-lactam ring, thus deactivating
the drug molecules. This mechanism is effective against penicillin (which is β-
lactamase sensitive) and not effective against methicillin and oxacillin (which
are β-lactamase resistant) (WHO, 2010). The second β-lactam resistance mech-
anism is mediated by proteins which are capable of functionally substituting for
PBPs, but have much smaller affinity to β-lactam molecules. This mechanism is
effective against penicillin, methicillin and oxacillin.

Penicillin In our dataset, all strains resistant to penicillin possess proteins
responsible for one of the two mechanisms. More precisely, there are 69 drug-
resistant strains (with available drug resistance information), which possess blaZ—
the standard β-lactamase protein (note that its regulators blaR1 and blaI do not
always co-occur). All the remaining penicillin-resistant strains have mecA, which
is an altered PBP. Table 1.2 provides information about the top-scoring gene-
gain/-loss profiles.

Applying our method we, have also identified the uncategorized putative pro-
tein, SAR0056, as putatively associated with penicillin resistance (see Table 1.2).

Methicillin Applying our approach to gene-gain/-loss profiles we identified
(beside mecA) genes ugpQ and maoC . The correlation of gene profiles to the
profile of mecA and their close proximity on the genomes suggests that these
genes co-evolve (see Figure 1.5 for more details). This co-evolution may reflect
some important role played by these genes in methicillin resistance. This calls
for further study of the role of these two genes in methicillin resistance.

We have also identified a few point mutations that are putatively associ-
ated with methicillin resistance. Interestingly, two of the mutations in the top
10 essential mutations according to weighted support (I72F in SAR0420 and
E208Q/K/D in SAR0436) are present in cell membrane proteins. This suggests
some compensatory mechanism to the presence of mecA.

Ciprofloxacin Ciprofloxacin belongs to a broad class of antibiotics, called
fluoroquinolones, which are functional against bacteria by binding DNA gyrase
subunit A (encoded by gyrA) and DNA topoisomerase 4 subunit A (encoded by
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Figure 1.5: Presence and relative genome coordinates of genes related to methicillin re-
sistance (mecA, mecR1, mecI, ccrA, ccrB, ccrC), put together with the identified genes:
ugpQ and maoC. The gene presence profiles are clustered with respect to the genes order.
In this figure we include only these methicillin-resistant strains for which all the genes where
located on the main genome and within the same sequence contig (in order to determine
the relative positions).

parC), which are enzymes necessary to separate bacterial DNA, thereby inhibit-
ing cell division (Knox et al., 2011). The most common ciprofloxacin-resistance
mechanism is mediated by point mutations in the drug targets, parC and gyrA.
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Applying our approach we identified (by highest weighted support) two point
mutations in ciprofloxacin target genes — S80F/Y in parC and S90A/L in
gyrA— which are located in QRDR and known to be responsible for the first
mechanism of ciprofloxacin resistance (Ferrero et al., 1995). The presence of these
mutations is correlated with the ciprofloxacin resistance profile for strains with
available drug resistance information. However, they differ for two strains ED98
and 16K (only the mutation in parC is present). This may suggest intermedi-
ate drug resistance level for these strains. Unfortunately ciprofloxacin resistance
information is not available for these strains.

Erythromycin Erythromycin acts by binding the 23S rRNA molecule (in the
50S subunit) of the bacterial ribosome complex, leading to inhibition of protein
synthesis (Knox et al., 2011).

There are three known erythromycin resistance mechanisms (Schmitz et al.,
2000). First — the most common mechanism — is by methylation (addition of
two residues to the domain V of 23S rRNA) of the 23S rRNA molecule, which
prevents the ribosome from binding with erythromycin. This methylation is me-
diated by enzymes from the erm gene family, the most common are ermA and
ermC . The second mechanism is mediated by the presence of macrolide efflux
pumps (encoded by msrA and msrB). The third mechanism is the inactivation
of drug molecules by specialized enzymes such as ereA or msrB (Schmitz et al.,
2000).

We found that none of the strains in our case study possess genes ereA or
ereB. Genes encoding efflux pumps (msrA and msrB) are present also in drug-
susceptible strains (for example, NCTC 8325 and Newman), which may suggest
that the mechanism is inactive for the considered strains of S. aureus or the
enzyme production rates are too small, which we are not able to account by
our method. Using our approach we identified (by the highest support) the gene
ermA responsible for the most common drug resistance mechanism.

Here, there is one erythromycin-susceptible strain, USA300 TCH959, which
harbours the ermA gene. This may suggest disruption of the drug resistance
mechanism in that strain, errors in drug susceptibility testing or errors in se-
quencing.

Interestingly, we identified gene SAR1736(spc2) (which is a known spectino-
mycin resistance determinant) as potentially associated with erythromycin re-
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sistance. This suggests that drug resistance to spectinomycin and erythromycin
co-evolved, despite these two drugs belonging to different classes according to
the ATC drug classification system (WHO, 2010).

Gentamicin Gentamicin works by inhibition of protein synthesis by binding
the 30S subunit of the ribosome complex (Shakil et al., 2008).

Interestingly, strain USA300 FPR3757 exhibits intermediate drug resistance,
which is correlated with the absence of aacA-aphD gene in its genome sequence.
Since our method requires binary information on drug susceptibility, we marked
this strain as drug-susceptible for experiments.

The most common resistance mechanism responsible for high levels of gentam-
icin resistance is mediated by the drug-modifying enzyme SaurJH1 2806(aacA-
aphD). Applying our methodology we identified the gene encoding it as likely to
be associated with drug resistance (maximal support). Moreover, we identified
also the gene SaurJH1 2805 as putatively associated with gentamicin resistance.
The close proximity of these two genes in the genomes and their highly corre-
lated gene-gain/-loss profiles suggest co-evolution. We hypothesize that the gene
SaurJH1 2805 plays some role in drug resistance for gentamicin.

1.3.2 M. tuberculosis datasets

Here we present results obtained by applying GWAMAR to two large datasets for
M. tuberculosis. We use these case studies to present the usability of GWAMAR to
identify chromosomal mutations associated with drug resistance. The first dataset
is prepared for the set of 173 strains with genome sequences and annotations
publicly available in the PATRIC database, developed by Wattam et al. (2014).
For this set of strains, we collected drug resistance information from over 20
publications. The genotype and phenotype data for the second dataset comes
from the M. tuberculosis Drug Resistance Directed Sequencing Database at http:
//www.broadinstitute.org/annotation/genome/mtb_drug_resistance.

1.3.2.1 First case study

The first case study is based on the set of 173 fully sequenced strains of M. tu-
berculosis with publicly available data.
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The preprocessing steps of preparing the genotype data were performed us-
ing eCAMBer, our tool to support comparative analysis of multiple bacterial
strains (Woźniak et al., 2012).

In particular, first, we used eCAMBer to download the genome sequences and
annotations from the PATRIC database (Wattam et al., 2014). Next, we applied
eCAMBer to unify the genome annotations of protein-coding genes and to iden-
tify the clusters of genes with high sequence similarity. Then, for the subset of
4379 such identified gene clusters with genes present in at least 90% of the strains,
we computed multiple alignments using MUSCLE (Edgar, 2004). The multiple
alignments were computed for amino acid sequences of protein coding genes, as
well as nucleotide sequences of their promoter regions (-50bp upstream), and
rRNA genes. In total, based on the computed multiple alignments, we identified
118913 mutations, which constituted the input genotype data for GWAMAR. Af-
ter the procedure of binarization in GWAMAR we ended up with 18635 binary
mutation profiles.

The input phenotype data was collected from over 20 publications issued to-
gether with the fully sequenced genomes. Based on the drug resistance informa-
tion collected for ciprofloxacin and ofloxacin, we introduced a new drug resistance
profile for the drug family of fluoroquinolones. A strain was categorized as sus-
ceptible to fluoroquinolones if it was susceptible to at least one of the drugs, but
not resistant to any of them. Similarly, a strain was categorized as resistant to
fluoroquinolones if it was resistant to at least one of the drugs, but not suscepti-
ble to any of them. If none of the cases was satisfied for a strain, then the drug
resistance status of the strain was categorized as unknown. We restrict analysis
to the set of six drugs or drug families: fluoroquinolones, ethambutol, isoniazid,
pyrazinamide, rifampicin and streptomycin.

The input phylogenetic tree was reconstructed using the maximum likelihood
approach implemented in the PhyML, developed by (Guindon et al., 2010). As
for the input for the tool we used the set of all the identified point mutations
concatenated into one multiple alignment file. This input was prepared by an
additional feature of eCAMBer.

Having prepared the set of binary mutation profiles and drug resistance pro-
files, together with the phylogenetic tree, we applied GWAMAR to compute MI,
OR, H, WS, TGH and RBM association scores. However, in order to compute
TGH score efficiently, we averaged three TGH scores obtained over three random
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binary trees we obtained from the original tree by splitting its nodes with multi-
furcations. This step of computations, ran using 6 processors, took around 6s for
MI, OR, H and WS; around 34s for TGH; and around 3s for all the considered
variants of the RBM score.

drug name gene id gene name mutation all h.c. TGH

Fluoroquinolones Rv0006 gyrA D94H1A5N2Y2G12 Y Y 14.184
Isoniazid Rv1908c katG S315N1G2T75 Y Y 9.045
Rifampicin Rv0667 rpoB S450L71 Y Y 8.602
Streptomycin Rv0682 rpsL K43R15 Y Y 8.323
Ethambutol Rv3795 embB M306L1I32V18 Y Y 8.250
Isoniazid Rv1483 fabG1 C-15T30 Y Y 5.845
Rifampicin Rv0667 rpoB D435Y2F5V11G3A1 Y Y 5.040
Streptomycin Rv0682 rpsL K88R5M1 Y Y 4.164
Ethambutol Rv3795 embB E504G1D1 N N 3.331
Pyrazinamide Rv2043c pncA H51P1 Y Y 2.708
Pyrazinamide Rv2043c pncA W68L1 Y Y 2.708
Rifampicin Rv0667 rpoB H445D8Y2R1 Y Y 2.530
Streptomycin Rvnr01 rrs G1108C2 N N 1.717
Ethambutol Rv3795 embB D869G1 N N 1.688
Ethambutol Rv3795 embB A505T1 N N 1.688
Ethambutol Rv3795 embB D1024N1 Y N 1.688
Fluoroquinolones Rv0005 gyrB N538T1 Y Y 1.685
Fluoroquinolones Rv0006 gyrA S91P1 Y Y 1.685
Fluoroquinolones Rv0005 gyrB T539I1 N N 1.685
Streptomycin Rvnr01 rrs A1401G17 Y N 1.288
Ethambutol Rv3795 embB Y334H2 Y N 1.054
Ethambutol Rv3795 embB Q497R2 Y Y 1.054
Rifampicin Rv0667 rpoB E250G3 N N 1.047
Fluoroquinolones Rv0006 gyrA A90V6G3 Y Y 1.035
Streptomycin Rvnr01 rrs C517T33 Y Y 0.915

Table 1.4: 25 top-scoring associations between drug resistance profiles and point mutations
in the case study on 173 fully sequenced M. tuberculosis strains, when restricted to only
these genes which are associated with drug resistance to the corresponding drugs
. Each row corresponds to one association, whereas the consecutive columns describe: drug name, gene identifier,
gene name, mutation, association presence in the TBDReaMDB database, status indicating whether the associ-
ation is categorized as high-confidence in TBDReaMDB, TGH score. Lower indexes in the mutation descriptions
indicate the numbers of strains possessing the corresponding amino acid or nucleotide variant.

We took a closer look at the top-scoring mutations returned by the scores,
but restricting our analysis to only these associations which involve genes which
are known to be associated with drug resistance for the corresponding drug —
possessing at least one point mutation annotated as high-confidence in the TB-
DReaMDB database. Table 1.4 presents the list of top 25 associations ordered
according to TGH score. In the set of 25 top-scored associations, 19 are present
in the TBDReaMDB database and 16 of them are categorized as high-confidence
mutations. A closer look at the mutations which are not present in TBDReaMDB
revealed that some of them can be supported by literature. In particular, muta-
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tion E504G/D in embB has recently been reported as associated with resistance
to ethambutol (Bakuła et al., 2013). The close proximity of this mutation to
A505T in embB may also suggest that the latter is associated with ethambu-
tol resistance. Similarly, the mutation T539I has already been associated with
resistance to fluoroquinolones (Malik et al., 2012).

Literature search did not provide us any additional support for the remaining
three mutations (D869G in embB and G1108C in rrs), which haven’t been also
reported in TBDReaMDB.

1.3.2.2 Second case study

The second case study, mtu_broad, is based on the data available in the Broad In-
stitute database http://www.broadinstitute.org/annotation/genome/mtb_drug_
resistance. This database contains sequencing data and drug resistance infor-
mation for 1398 strains of M. tuberculosis. However, it should be noted that only
genes of interest were sequenced; Table 1.5 presents the list of 28 sequenced genes
for each strain. Additionally 12 promoter sequences were sequenced. In total, this
database contains 1067 mutations (non-synonymous amino-acid changes or nu-
cleotide changes in promoters), which constituted the input genotype data for
GWAMAR. After the procedure of binarization in GWAMAR we ended up 850
binary mutation profiles.

Similar to the previous case study, based on the drug resistance informa-
tion available in the database for ciprofloxacin, ofloxacin, levofloxacin and mox-
ifloxacin, we introduced a new drug resistance profile for the drug family of
fluoroquinolones. A strain was categorized as susceptible to fluoroquinolones if
it was susceptible to at least one of the drugs, but not resistant to any of them.
Similarly, a strain was categorized as resistant to fluoroquinolones if it was resis-
tant to at least one of the drugs, but not susceptible to any of them. If none of the
cases was satisfied for a strain, then the drug resistance status of the strain was
categorized as unknown. We restrict further analysis to the set of six drugs or
drug families: fluoroquinolones, ethambutol, isoniazid, pyrazinamide, rifampicin
and streptomycin.

In these experiments the phylogenetic tree was reconstructed using the maxi-
mum likelihood approach implemented in the PhyML package, developed by Guin-
don et al. (2010). As an input for the tool we used the set of all available mutations
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gene id gene name description prom. sequenced?

Rv0005 gyrB DNA gyrase subunit B yes
Rv0006 gyrA DNA gyrase subunit A yes
Rv0341 iniB isoniazid inductible gene protein yes
Rv0342 iniA isoniazid inductible gene protein yes
Rv0343 iniC isoniazid inductible gene protein yes
Rv0667 rpoB DNA-directed RNA polymerase beta chain yes
Rv0682 rpsL 30S ribosomal protein S12 yes
Rv1483 fabG1 3-oxoacyl-[acyl-carrier protein] reductase yes
Rv1484 inhA NADH-dependent enoyl-[acyl-carrier-protein] reductase yes
Rv1694 tlyA cytotoxin|haemolysin no
Rv1854c ndh NADH dehydrogenase yes
Rv1908c katG catalase-peroxidase-peroxynitritase T no
Rv2043c pncA pyrazinamidase/nicotinamidas yes
Rv2245 kasA 3-oxoacyl-[acyl-carrier protein] synthase 1 no
Rv2427Ac oxyR’ hypothetical protein no
Rv2428 ahpC alkyl hydroperoxide reductase C protein yes
Rv2764c thyA thymidylate synthase yes
Rv2764c ddl D-alanine-D-alanine ligase ddlA no
Rv3423c alr alanine racemase no
Rv3793 embC membrane indolylacetylinositol arabinosyltransferase yes
Rv3794 embA membrane indolylacetylinositol arabinosyltransferase yes
Rv3795 embB membrane indolylacetylinositol arabinosyltransferase yes
Rv3854c ethA monooxygenase yes
Rv3919c gid glucose-inhibited division protein B yes
Rvnr01 rrs ribosomal RNA 16S no
Rvnr02 rrl ribosomal RNA 23S no

Table 1.5: List of sequenced genes and promoters available at the Broad Institute database,
http://www.broadinstitute.org/annotation/genome/mtb_drug_resistance.

concatenated into one multiple alignment file. The preparation of the multiple
alignment file as well as running PhyML was done with the use of eCAMBer.

Similarly, as in the mtu173 dataset, we applied GWAMAR to compute MI,
OR, H, WS, TGH and RBM association scores. As in the previously described
case study, in order to compute TGH score efficiently, we averaged three TGH
scores obtained over three random binary trees we obtained from the original
tree by splitting its nodes with multifurcations. This step of computations, ran
using 6 processors, took around 5s for MI, OR, H and WS; around 2h for TGH;
and around 2s for all the considered variants of the RBM score. It took relatively
long time to compute TGH score due to its high time complexity with respect
to the numbers of strains considered 1.2.3.

Similarly as for the mtu173 dataset, we sort the set of putative associations
according to the TGH score, but restricting our analysis to only these associations
which involve genes which are known to be associated with drug resistance for
the corresponding drug — possessing at least one point mutation annotated as
high-confidence in the TBDReaMDB database. Table 1.6 presents the list of the
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drug name gene id gene name mutation all h.c. TGH

Fluoroquinolones Rv0006 gyrA D94Y6H2A26G78N14 Y Y 128.323
Rifampicin Rv0667 rpoB S450L743W22 Y Y 72.284
Ethambutol Rv3795 embB M306T1L16V290I313 Y Y 70.217
Fluoroquinolones Rv0006 gyrA A90G2V46 Y Y 41.699
Streptomycin Rv0682 rpsL K43R228 Y Y 30.012
Isoniazid Rv1908c katG S315T895G2I3R3N27 Y Y 27.966
Ethambutol Rv3795 embB Q497H5K18P10R43 Y Y 17.081
Streptomycin Rv0682 rpsL K88Q1R28T32M7 Y Y 16.327
Fluoroquinolones Rv0005 gyrB N538K1S1T9D2 Y Y 12.605
Rifampicin Rv0667 rpoB H445P2Q2L27Y53R42D25N7 Y Y 12.252
Streptomycin Rvnr01 rrs A1401G254 Y N 9.509
Streptomycin Rvnr01 rrs A514C90 Y Y 8.940
Pyrazinamide Rv2043c pncA T135A1P22 Y N 8.814
Fluoroquinolones Rv0006 gyrA S91P9 Y Y 7.557
Rifampicin Rv0667 rpoB D435H1N2A2Y27G3V140 Y Y 7.480
Ethambutol Rv3795 embB G406C3A68D52S43 Y Y 7.057
Pyrazinamide Rv2043c pncA T-11G3C24 Y Y 6.766
Fluoroquinolones Rv0006 gyrA D89G2N4 Y N 6.253
Pyrazinamide Rv2043c pncA L120P20R5 Y N 6.146
Streptomycin Rvnr01 rrs C517T26 Y Y 5.169
Pyrazinamide Rv2043c pncA Q10H3R10P12 Y Y 5.053
Pyrazinamide Rv2043c pncA V139M3G2A7L1 Y Y 5.053
Ethambutol Rv3795 embB D328G5H1Y9 Y N 5.032
Streptomycin Rvnr01 rrs A908C7G1 Y N 4.779
Pyrazinamide Rv2043c pncA D12E1G5N1A12 Y Y 4.725

Table 1.6: 25 top-scored associations between drug resistance profiles and point mutations
in the case study for 1398 partially sequenced M. tuberculosis strains, when restricted to
only these genes which are associated with drug resistance to the corresponding drugs.
This dataset is provided by The Broad Institute. Each row corresponds to one association,
whereas the consecutive columns describe: drug name, gene identifier, gene name, descrip-
tion of the mutation, association presence in the TBDReaMDB database, status indicating
whether the association is categorized as high-confidence in TBDReaMDB, TGH score.
Lower indexes in the mutation descriptions indicate the numbers of strains possessing the
corresponding amino acid or nucleotide variant.

top 25 associations ordered according to TGH score. In the set of 25 top-scored
associations, all are present in TBDReaMDB and 19 of them are categorized as
high-confidence mutations. The presence in the TBDReaMDB database provides
some additional support for the six associations which are categorized as high-
confidence.

1.3.2.3 Assessment of accuracy

Here we use the two datasets described above to assess the accuracy of the various
association scores, viz: mutual information, odds ratio, hypergeometric, weighted
support, TGH and RBM.

We considered to use for comparison CCTSWEEP, proposed by Habib et al.
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(2007) — a score conceptually similar to the TGH score. However, we failed to run
its implementation, probably, due to rather poor documentation. Its authors had
not responded to our queries in time. Thus, we omitted it from our experiments.

In order to assess the accuracy of different association scores we need a reliable
dataset of known drug resistance associations. Here, we test two approaches
to define our gold standard. In the first, we take all 607 associations from the
Tuberculosis Drug Resistance Mutation Database (TBDReaMDB), developed
by Sandgren et al. (2009). In the second, we use the subset of 81 drug resistance
associations classified as high-confidence in the database. Table 1.6 presents the
list of the mutations in TBDReaMDB with the distinguished subset of high-
confidence associations. In all comparative experiments we assume a putative
association to be a positive if it is present in the gold standard.

In both case studies, as the set of positives, we assume the subset of muta-
tions present in our gold standard, also present in the available genotype data.
This is the set of mutations which may be potentially detected (we say they
are “detectable”) using the available datasets. Thus, in the case when all TB-
DReaMDB associations constitute the gold standard, there are 94 and 212 of such
“detectable” associations for the mtu173 and mtu_broad datasets, respectively.
Likewise, if only high-confidence associations are considered as gold standard,
then 39 and 74 of such “detectable” associations for the mtu173 and mtu_broad
datasets, respectively

The set of negatives is constructed by random sampling from the whole set of
identified putative associations except for the associations which are classified as
positives. The number of sampled negatives equals the total number of mutations
present in the genes which have at least one mutation in the gold standard. It
should be noted that, among the mutations present within the genes which are
associated with drug resistance, many can be real positives (associated with
drug resistance), but lacking the annotation in TBDReaMDB. Thus, we use this
approach of sampling from all mutations in order to significantly reduce the
probability of classifying as negatives associations which are real but not present
in the database.

Figure 1.7 presents statistics for the Area Under the Curve (AUC) for the
precision and recall curves for different association scores. The results come from
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drug name gene id gene name positions
TBDReaMDB (high-conf.) TBDReaMDB (all)

Ethambutol Rv0340 173
Rv0341 iniB -89,47
Rv0342 iniA 308,501
Rv0343 iniC 248,351
Rv1267c embR 7,32,53... (24 in total)
Rv3124 moaR1 -16
Rv3125 54
Rv3126 276
Rv3264c manB 152
Rv3266c rmlD -71,257,284
Rv3793 embC 5,244,247... (25 in total)
Rv3794 embA -16,-12,-11... (10 in total)
Rv3795 embB 306,406,497 128,221,225... (85 in total)

Fluoroquinolones Rv0005 gyrB 538 457,458,472... (9 in total)
Rv0006 gyrA 90,91,94,102,126 74,80,88... (10 in total)

Isoniazid Rv0129c fbpC -63,-23,158
Rv0340 163
Rv0342 iniA 3,537
Rv0343 iniC 83
Rv1483 fabG1 -15,-8 -92,-67,-24... (10 in total)
Rv1484 inhA 8,16,21... (10 in total)
Rv1592c -29,42,430
Rv1772 4
Rv1854c ndh 13,18,110,239,268
Rv1908c katG 279,315 1,2,11... (171 in total)
Rv1909c furA 5
Rv2243 fabD 275
Rv2245 kasA 269 66,77,121... (7 in total)
Rv2247 accD6 229
Rv2428 ahpC -46,-39,21 -66,-49,-46... (21 in total)
Rv2846c efpA 73
Rv3566c nat 67,207
Rv3795 embB 333

Pyrazinamide Rv2043c pncA -11,7,10... (51 in total) -12,-11,-7... (103 in total)

Rifampicin Rv0667 rpoB 432,435,441,445,450,452 65,300,409... (38 in total)

Streptomycin Rv0682 rpsL 43,88 9,40,41... (11 in total)
Rv3919c gidB 16,40,45... (19 in total)
Rvnr01 rrs 492,513,514,517,907 190,427,462... (17 in total)

Figure 1.6: The list of drug resistance associations in the TBDReaMDB database. The
first three columns correspond to the drug name, gene identifier and gene name of the
gene corresponding to the point mutation. The next column lists the positions of the
mutations corresponding to associations classified as high-confidence in the TBDReaMDB
database. The last column lists positions of all the mutations present in the database.
Each positive number indicates the position of the mutation in the amino acid sequence
of the corresponding gene. Each negative number indicates the position of the mutation
in the nucleotide sequence of the promoter of the gene, counting upstream its TIS. In
some cases (if there are too many mutation to fit them within the table width) we do
not list them all here — the complete list might be accessed at the project website,
http://bioputer.mimuw.edu.pl/gwamar.
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Figure 1.7: Comparison of different association scores implemented in GWAMAR based
on the Area Under the Curve (AUC) statistic for the precision-recall curves. Left panels
present the results for the mtu173 dataset; right for the mtu_broad dataset. The first row
of panels corresponds to the experiments in which all associations present in TBDReaMDB
were used as the gold standard, whereas the second row corresponds to the experiments
in which only high-confidence associations were used as the gold standard. The process of
sampling the set of negatives was repeated 1000 times. The barplots for tree-ignorant and
tree-aware scores are shown green and blue, respectively.

sampling the set of negatives and calculating the AUC, repeated 1000 times.
The results show that on average, the tree-aware statistics (WS, TGH) per-
formed slightly better than the tree ignorant scores on the mtu173 dataset.
They also show that, TGH performed best on the large mtu_broad dataset,
but was slightly worse on the relatively small mtu173 dataset. The presented
results also show, that the Rank-based metascore performs consistently better
than individual scores in most of the settings. For example, the RBM (MI,OR,H)
outperformed all individual scores it combines in all the settings. Notably, the
RBM(ALL) score, outperformed consistently all tree-ignorant scores in all the
settings.
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We conclude that, the tree-aware association scores outperform the tree-ignorant
methods. In particular, the Rank-based metascore performed consistently better
than the individual scores. However, the advantage is rather small and depen-
dent on a setting. The performance may be influenced by the tree topology, the
strains number or the small number of positives.

1.3.2.4 Compensatory mutations

The most common mechanism of rifampicin resistance in M. tuberculosis is ac-
quired by point mutations within the rifampicin resistance determining region
(RRDR) in the rpoB gene, which corresponds to the rifampicin binding spot (Pa-
tra et al., 2010).

Since the rpoB gene is essential for bacteria, mutations present in this gene,
due to altering its structure, have often deleterious effect on the bacterial fitness
in the drug-free environment (Brandis and Hughes, 2013). This effect may be
potentially reversed by compensatory mutations. Thus, compensatory mutations
tend to appear later, in the evolutionary history, than the mutations directly
responsible for drug resistance. Hence, for a given compensatory mutation, we
expect to observe it in a subset of strains which correspond to the mutation
directly responsible for drug resistance.

Based on the above described assumption, we identify putative compensatory
mutations using the following procedure applied to the mtu_broad and mtu173
datasets. First, we identify the set of mutations within RRDR. Here, RRDR is
defined as a region of 27 amino acids between positions 426 and 452 in the rpoB
gene. Mutations from this region constitute the set of putative primary (directly
responsible for drug resistance) mutations. For the mtu173 dataset we obtained
the following list of putative primary mutations:

• L430P1

• D435Y2F5V11G3A1

• H445D8Y2R1

• S450L71

• L452P2
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Here, the description of each mutation comprises of the reference amino acid,
the position of the mutation in the gene, and different amino-acid variants of
the mutation among the strains. For each mutation, the lower indexes indicate
the number of strains possessing the corresponding amino-acid variant of the
mutation within the 173 strains in the mtu173 dataset.

Applying the same method to the mtu_broad dataset we obtained the following
list of putative primary mutations:

• S428R2

• Q429P1H1

• L430P3R9

• S431G1

• Q432P5E2L1K5H5

• M434I2

• D435H1N2A2Y27G3V140

• N437H1K1

• N438H1

• P439S1

• S441L4

• H445P2Q2L27Y53R42D25N7

• R448Q7

• S450L743W22

• L452V1P24

Here, similarly, as for the previously described list of mutations, for each muta-
tion, the lower indexes indicate the number of strains possessing the correspond-
ing amino-acid variant of the mutation within the 173 strains in the mtu_broad
dataset.

46



Interestingly, in both case studies the sets of strains possessing the primary
mutations tend to be disjoint. For example, for the mtu173 dataset, the sets of
strains possessing mutations at positions 450 and 435 are disjoint (hypergeomet-
ric test p-value=2.302 · 10−8). The sets of strains possessing the mutations at
positions 450 and 445 are also disjoint (hypergeometric test p-value=0.00026).
Similarly, for the mtu_broad dataset, the sets of strains possessing mutations
at positions 450 and 445 are disjoint (hypergeometric test p-value=2.62 · 10−63).
The sets of strains possessing mutations at positions 450 and 435 overlap by only
three elements (hypergeometric test p-value=3.87 · 10−64). We hypothesize that
this phenomenon may be caused by the negative epistatic interactions between
mutations from RRDR (Khan et al., 2011).

Finally, we identify a set of putative compensatory mutations, applying the
following simple rule: a mutation is classified as a putative compensatory muta-
tion if the set of strains possessing the mutation is contained within the set of
strains corresponding to one of the mutations identified as primary mutations
(from RRDR).

rpoA
0 100 200 300347

rpoB
0 100 200 300 400 500 600 700 800 900 1000 1100 1172

rpoC
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1314

R
R
D
R

casali evolution 2014

mtu broad

de vos putative 2013
comas whole-genome 2012

mtu173

1Figure 1.8: Comparison of the sets of putative compensatory mutations within the rpoA,
rpoB and rpoC genes, reported in various sources and detected in our two datasets. Each
mutation’s position is indicated by a vertical line of the color corresponding to the source
it was reported in. In particular orange and violet lines indicate positions of mutations
identified by our approach applied to the mtu173 and mtu_broad datasets, respectively.
The other lines indicate mutations reported in the recent articles by Comas et al. (2012)
(red), de Vos et al. (2013) (blue) and Casali et al. (2014) (black).

Here, we compare the sets of putative compensatory mutations for rifampicin
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within the rpoA, rpoB and rpoC genes, identified by our approach with the
mutations reported in other recent articles by Comas et al. (2012), de Vos et al.
(2013), and Casali et al. (2014).

Figure 1.8 presents the distribution of the putative compensatory mutations
identified in these recent studies, put together with the set of putative compen-
satory mutations identified based on our two case studies. Note that the identified
putative compensatory mutations tend to cluster within the region of the rpoC
gene from 430 to 530.

Table 1.7 presents another view on the list of putative compensatory muta-
tions identified by our approach with comparison with those reported in the
other recent articles. However, due to space limitation, in this table, we only list
a subset of such mutations. A mutation is listed in the table, if it was identi-
fied in one of our two datasets and also reported in at least one of the three
recent articles, or reported in at least two of the articles. The complete list
of putative compensatory mutations is available on the website of our project.
http://bioputer.mimuw.edu.pl/gwamar.

We conclude that using our approach we were able to re-identify most of the
putative compensatory mutations identified previously. Moreover, in contrast to
the other research groups, which used in house sequenced bacteria, we achieved
our results by analysis on freely and publicly available data.

1.4 Summary

In this chapter, we presented GWAMAR, a tool we have developed for identifying
of drug resistance-associated mutations based on comparative analysis of whole-
genome sequences in bacterial strains.

The tool is designed as an automatic pipeline which employs eCAMBer for
preprocessing of the genotype data. This preprocessing includes: (i) download-
ing of genome sequences and gene annotations, (ii) unification of gene annota-
tions among the set of considered strains, (iii) identification of gene families, (iv)
computation of multiple alignments and identification of point mutations which
constitute the input genotype data.

GWAMAR implements various statistical methods — such as mutual infor-
mation, odds ratio, hypergeometric score — to associate the drug resistance phe-
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gene position ref aa comas 2012 de vos 2013 casali 2014 mtu173 mtu broad

rpoA 31 G A1S1 A1S1
rpoA 181 T I1 A1
rpoA 183 V A1G1 G1
rpoA 187 T A3P1 A1P1
rpoA 190 D G1 G1

rpoB 45 P S1 L1 A3L9S7T2
rpoB 399 T A1 A5I4
rpoB 491 I V1 L1
rpoB 496 V L1M1 G1M3
rpoB 503 F S1 S3
rpoB 731 L P1 P1 P8
rpoB 761 E D1 D1
rpoB 827 R C1 C3
rpoB 835 H P1R1 R1 P1R3

rpoC 332 G R2 C1R1S1 S7
rpoC 431 V M1 M1
rpoC 433 G S1 C1S1 S1
rpoC 434 P A1R1 Q1R1
rpoC 449 L V1 V1
rpoC 452 F C1 C1
rpoC 483 V A3G3 A1G3 A1G1 A1G5
rpoC 484 W G2 G1 G1
rpoC 485 D H1N1 Y1 N1Y1
rpoC 491 I T1V2 T2 T1V1 T2
rpoC 516 L P2 P1
rpoC 519 G D1 D1 V1
rpoC 521 A D1 D1
rpoC 525 H N1 Q1 Q1
rpoC 527 L V1 V1 V8
rpoC 698 N H1K1S1 H1S1 H1K1S1 K1
rpoC 734 A V1 V2
rpoC 1040 P R1 R1S1T1
rpoC 1252 V L1 M4

Table 1.7: The list of putative compensatory mutations identified by our approach applied
to the mtu_broad and mtu173 datasets, identified in one of our two datasets and also
reported in at least one of the three recent articles, or reported in at least two of the
articles. The first two columns correspond to the gene name, and the reference amino acid,
respectively. The next three columns provide brief descriptions of the mutations identified
in the three recent studies: by Comas et al. (2012), de Vos et al. (2013) and Casali et al.
(2014), respectively. The last two columns list the mutations identified based on our two
case studies. Each mutation’s description comprises of the reference amino acid, the posi-
tion of the mutation in the gene, and different amino-acid variants of the mutation among
the strains. For each mutation, the lower indexes indicate the number of strains, in the
corresponding dataset, possessing the corresponding amino-acid variant of the mutation.

notypes with point mutations. In this work, we also present weighted support
(WS) and tree-generalized hypergeometric (TGH) score — two new statistical
scores — which employ phylogenetic information. As a part of this work, we
also present yet another score, called Rank-based metascore (RBM) to combine
multiple scores, thus compromising for weak points of the individual scores being
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combined.
In order to test our approach, we prepared one dataset for S. aureus and

two datasets for M. tuberculosis. The presented results demonstrate usefulness
of our approach to identify drug-resistance associated mutations based on pub-
licly available sequencing data. In particular, we were able to re-identify most of
the known drug-resistance associations. Our results also support the phenomena
previously reported in the literature, such as: (i) drug resistance-associated mu-
tations tend to have multiple variants observed; or (ii) drug resistance associated
mutations tend to cluster together in close genomic proximity.

Moreover, since most of the recent studies on the subject of compensatory
mutations and in general drug resistance-associated mutations used in-house se-
quenced bacteria, we achieved our promising results basing our analysis solely
on freely available public data.

The presented results also suggest that tree-aware methods (WS and TGH)
perform better than methods which do not incorporate phylogenetic information.
The results also show that the RBM score outperforms the individual scores in
most of the settings. In particular, the RBM (ALL) score performed better than
any tree-ignorant score in all the experiments.

Finally, despite some promising results, the presented tool has some limita-
tions. First, it does not take into account epistatic interactions between muta-
tions. Second, it takes into account only genomic changes, ignoring levels of gene
expression. Thirdly, it provides putative in silico associations which should be
subjected to further investigation in wet lab experiments.

The tools, case-study input data and the obtained results are available at the
website of this project, http://bioputer.mimuw.edu.pl/gwamar.
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