
CAMBer User’s Manual
Release 1.0

Michal Wozniak

19 July 2011

Contents

1 About the software 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 About the authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Manual 2
2.1 Software requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Software design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.4 Input files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Step 0: converting protein annotations from GenBank files . . . . . . . . . . . . . . . . . . . . . . . 4
2.6 Step 1: The closure procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.7 Step 2: The consolidation graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.8 Step 3: Connected components - gene families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.9 CAMBerVis: plug-in results into CAMBerVis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.10 Step 4: The refinement procedure (OPTIONAL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1 About the software

1.1 Background

We observe a lot of inconsistencies in the genome structure annotations among bacterial strains (John Dunbar et al.
BMC Genomics, 12(1):125, 2011). This inconsistency is a frustrating impedance to effective comparative genomic
analysis of bacterial strains in promising applications such as gaining insights into bacterial drug resistance.

CAMBer (Wozniak M, Wong L, Tiuryn J. BMC Genomics 2011) is an approach to support comparative analysis of
multiple bacterial strains. CAMBer unifies annotations of closely related species by homology transfer. It produces
what we called multigene families. Each multigene family reveals genes that are in one-to-one correspondence in the
bacterial strains, thereby permitting their annotations to be integrated. We present results of our method applied to
three human pathogens: Escherichia coli, Mycobacterium tuberculosis and Staphylococcus aureus.

1.2 Availability

This software is an open source application (GPL 3 license). Sources are available at the code.google website:



http://bioputer.mimuw.edu.pl/camber/software/camber2.zip

Please don’t hesitate to contact us with any comments and suggestion or if you are interested in co-developing this
software.

1.3 About the authors

This software was implemented by Michal Wozniak. Project idea and guidance came from Limsoon Wong and Jerzy
Tiuryn. Affiliation: Institute of Informatics, University of Warsaw

E-mails: m.wozniak@mimuw.edu.pl

2 Manual

2.1 Software requirements

• Python

• Sun Grid Engine (only for grid computations)

2.2 Installation

The CAMBer software is written in Python as a set of scripts. You need to have installed Python to run it. The software
does not need classical installation, you only need to download and extract the zip package:

http://bioputer.mimuw.edu.pl/camber

2.3 Software design

The software is designed as a set of executable scripts written in Python which communicate each other via their
outputs. Software’s configuration assumes that an experiment data and results are stored on the same hierarchy level
as the software. Figure 1 presents the hierarchy of both CAMBer and the S. aureus case study.

2 2 Manual



Figure 1: The folder hierarchy of the CAMBer software and the S. aureus case study.

Here we describe roles of the folders in Figure 1:

• camber2 - CAMBer software

• camber2/src/ext-tools — BLAST (user’s path to BLAST can be configured in
parameters-paths-defaults.txt)

• camber2/src/soft — CAMBer source code

• camber2/src/soft/cambervis — contains a script to generate input data for CAMBerVis
(create-cambervis-input.py)

• camber2/src/soft/closure — scripts to compute the closure procedure on the PC architecture

• camber2/src/soft/closure-gse — scripts to compute the closure on the SGE (Sun Grid Engine)
architecture

• camber2/src/soft/graph — scripts to compute the consolidation graph before and after refinement

• camber2/src/soft/formats — a script to parse and convert GenBank annotations into simplifier anno-
tations used by CAMBer

• camber2/src/soft/refinement — scripts to compute the refinement procedure on the PC architecture

• camber2/src/soft/refinement-sge — scripts to compute the refinement procedure on the SGE (Sun
Grid Engine) architecture

• camber2/src/soft/structs — structures used by CAMBer

• camber2/src/soft/utils — implementation of common methods used by CAMBer

• camber2/src/soft/parameters-params.txt — parameters of the method to transfer annotations

2.3 Software design 3



• camber2/src/soft/parameters-resources.txt — parameters defining paths to store results

• camber2/src/soft/parameters-paths-defaults.txt— parameters of system dependent values
like paths to the BLAST installation

• sta — folder with the S. aureus case study data

• sta/annotations — files with annotations

• sta/genomes — files with FASTA genome sequences

• sta/genbanks — files with GenBank genome annotations

• sta/blast — folder to store BLAST queries and results

• sta/strains-all.txt — list of S. aureus strains

• sta/results — CAMBer results

• sta/results/all-30-50-1e-10-YES-Q — CAMBer results for a specific set of parameters

• sta/results/all-30-50-1e-10-YES-Q/closure — CAMBer results for a specific set of parame-
ters

• sta/results/all-30-50-1e-10-YES-Q/ann — annotations at all stages of the closure procedure

• sta/results/all-30-50-1e-10-YES-Q/blast — blast hits that are acceptable according to the pa-
rameters

• sta/results/all-30-50-1e-10-YES-Q/graphs — the consolidation graph, list of connected com-
ponents, etc.

• sta/results/all-30-50-1e-10-YES-Q/pseudo-ann — gene annotations removed from consider-
ation due to untypical start codon, stop codon or length.

• sta/results/all-30-50-1e-10-YES-Q/refinement — edges removed from the consolidation
graph during the refinement procedure

• sta/results/all-30-50-1e-10-YES-Q/iteration.txt — current iteration of the closure proce-
dure

2.4 Input files

Input files of CAMBer consist of genomes, annotations. There is also required one file defining a list of strains.
According to the default parameters:

• annotations: stored in the annotations folder

• genomes: stored in the genomes folder

• list of strains: stored in the strains-all.txt file

2.5 Step 0: converting protein annotations from GenBank files

CAMBer uses simplifier annotations of genes encoding proteins — just keeps information about gene identifiers and
gene locus. To retrieve such list of annotated protein coding genes run the GenBank file converting script:

formats/genbanks_into_anns.py.

4 2 Manual



2.6 Step 1: The closure procedure

Scripts to compute the closure procedure are stored in the folders: camber2/src/soft/closure (for the PC
architecture) and camber2/src/soft/closure-gse (for the GSE architecture). In the first step to compute the
closure procedure we prepare genome databases running: prepare-databases.py. Then, we prepare a list of
annotations (filtering out these with untypical start codons, stop codons or lengths) running: prepare-anns.py.
Next, we iteratively run the three scripts:

• do-blasts.py — compute BLASTs all strains against all

• parse-blasts.py — parse and filter BLASTs that do satisfy CAMBer parameters

• merge-anns.py — merge accepted BLAST hits with annotations after the last iteration

2.7 Step 2: The consolidation graph

The next step is to create the consolidation graph. To do this run the two following scripts:

• graph/create-gene-graph.txt - compute the graph of genes. It is an undirected graph. Nodes are
predicted or annotated genes. There is an edge between a pair of genes if there is an acceptable BLAST hit
between them.

• graph/create-multigene-graph.txt - compute the consolidation graph of multigenes. It is an undi-
rected graph. Nodes are multigenes. There is an edge between two multigenes if there is an edge between at
least two elements of these multigenes in the gene graph.

2.8 Step 3: Connected components - gene families

Before, we compute connected components there are required files to store details about multigenes. To compute it
run this script:

• graph/save-multigene-details.py

Then, to compute connected components in the consolidation graph run the script:
graph/compute-components.py.

To run the refinement procedure it is required to save details about the computed connected components, run:
genes/save-components-details.py.

2.9 CAMBerVis: plug-in results into CAMBerVis

Once we have computed the first three steps we simply run the script:

• cambervis/create-cambervis-input.py

The script will generate the folder sta/results/all-30-50-1e-10-YES-Q/cambervis-input, which
contains input files required by CAMBerVis (genome sequences, unified annotations and the list of strains). The
simplest way to plug-in this data into CAMBerVis is to just copy the folder into examples forlder in the CAMBerVis
installation directory.

2.6 Step 1: The closure procedure 5



2.10 Step 4: The refinement procedure (OPTIONAL)

Similarly to the closure procedure there are two versions of the scripts to compute the edges to remove in the refinement
procedure, dependent to the platform: refinement for the PC platform and refinement-sge for the SGE (Sun
Grind Engine).

The refinement procedure removes edges from the consolidation graph that correspond to pairs of paralogs rather than
orthologs. For more details we refer to the publication about CAMBer.

To compute the set of edges to remove, run the script: remove-edges.py.

Again, run the sequence of scripts to build the consolidation graph and to compute connected components, after the
refinement:

• graph/create-multigene-graph-edges-removed.py

• compute-components-refined.py

• save-components-details.py

6 2 Manual


